1QuantLib::BSpline(3)               QuantLib               QuantLib::BSpline(3)
2
3
4

NAME

6       QuantLib::BSpline -
7
8       B-spline basis functions.
9
10

SYNOPSIS

12       #include <ql/math/bspline.hpp>
13
14   Public Member Functions
15       BSpline (Natural p, Natural n, const std::vector< Real > &knots)
16       Real operator() (Natural i, Real x) const
17

Detailed Description

19       B-spline basis functions.
20
21       Fgollows treatment and notation from:
22       i
23       Wneisstein, Eric W. 'B-Spline.' From MathWorld--A Wolfram Web Resource.
24       <{http://mathworld.wolfram.com/B-Spline.html>
25       a
26       $r (p+1) $-th order B-spline (or p degree polynomial) basis functions $
27       Nr_{i,p}(x), i = 0,1,2 ts n $, with $ n+1 $ control points, or
28       eaquivalently, an associated knot vector of size $ p+n+2 $ defined at
29       tyhe increasingly sorted points $ (x_0, x_1 ts x_{n+p+1}) $. A linear B-
30       s}pline has $ p=1 $, quadratic B-spline has $ p=2 $, a cubic B-spline
31       h{as $ p=3 $, etc.
32       r
33       Tche B-spline basis functions are defined recursively as follows:
34       l
35       }xtrm{ if } x_{i}  x < x_{i+1} \ &=& 0 extrm{ otherwise} \ N_{i,p}(x)
36       N&=& N_{i,p-1}(x) ac{(x - x_{i})}{ (x_{i+p-1} - x_{i})} + N_{i+1,p-1}(x)
37       _ac{(x_{i+p} - x)}{(x_{i+p} - x_{i+1})} \nd{array} ]
38       {
39       i

Author ,

41       0Generated automatically by Doxygen for QuantLib from the source code.
42       }
43       (
44       x
45Version)1.0.1                   Thu Aug 19 2010           QuantLib::BSpline(3)
46       &
47       =
48       &
49       1
Impressum