1i.vi(1)                       Grass User's Manual                      i.vi(1)
2
3
4

NAME

6       i.vi  - Calculates different types of vegetation indices.
7       Uses  red  and  nir  bands  mostly, and some indices require additional
8       bands.
9

KEYWORDS

11       imagery, vegetation index, biophysical parameters, NDVI
12

SYNOPSIS

14       i.vi
15       i.vi --help
16       i.vi output=name viname=type   [red=name]    [nir=name]    [green=name]
17       [blue=name]     [band5=name]    [band7=name]    [soil_line_slope=float]
18       [soil_line_intercept=float]     [soil_noise_reduction=float]     [stor‐
19       age_bit=integer]     [--overwrite]   [--help]   [--verbose]   [--quiet]
20       [--ui]
21
22   Flags:
23       --overwrite
24           Allow output files to overwrite existing files
25
26       --help
27           Print usage summary
28
29       --verbose
30           Verbose module output
31
32       --quiet
33           Quiet module output
34
35       --ui
36           Force launching GUI dialog
37
38   Parameters:
39       output=name [required]
40           Name for output raster map
41
42       viname=type [required]
43           Type of vegetation index
44           Options: arvi, dvi,  evi,  evi2,  gvi,  gari,  gemi,  ipvi,  msavi,
45           msavi2, ndvi, ndwi, pvi, savi, sr, vari, wdvi
46           Default: ndvi
47           arvi: Atmospherically Resistant Vegetation Index
48           dvi: Difference Vegetation Index
49           evi: Enhanced Vegetation Index
50           evi2: Enhanced Vegetation Index 2
51           gvi: Green Vegetation Index
52           gari: Green Atmospherically Resistant Vegetation Index
53           gemi: Global Environmental Monitoring Index
54           ipvi: Infrared Percentage Vegetation Index
55           msavi: Modified Soil Adjusted Vegetation Index
56           msavi2: second Modified Soil Adjusted Vegetation Index
57           ndvi: Normalized Difference Vegetation Index
58           ndwi: Normalized Difference Water Index
59           pvi: Perpendicular Vegetation Index
60           savi: Soil Adjusted Vegetation Index
61           sr: Simple Ratio
62           vari: Visible Atmospherically Resistant Index
63           wdvi: Weighted Difference Vegetation Index
64
65       red=name
66           Name of input red channel surface reflectance map
67           Range: [0.0;1.0]
68
69       nir=name
70           Name of input nir channel surface reflectance map
71           Range: [0.0;1.0]
72
73       green=name
74           Name of input green channel surface reflectance map
75           Range: [0.0;1.0]
76
77       blue=name
78           Name of input blue channel surface reflectance map
79           Range: [0.0;1.0]
80
81       band5=name
82           Name of input 5th channel surface reflectance map
83           Range: [0.0;1.0]
84
85       band7=name
86           Name of input 7th channel surface reflectance map
87           Range: [0.0;1.0]
88
89       soil_line_slope=float
90           Value of the slope of the soil line (MSAVI only)
91
92       soil_line_intercept=float
93           Value of the intercept of the soil line (MSAVI only)
94
95       soil_noise_reduction=float
96           Value of the factor of reduction of soil noise (MSAVI only)
97
98       storage_bit=integer
99           Maximum bits for digital numbers
100           If  data  is  in  Digital Numbers (i.e. integer type), give the max
101           bits (i.e. 8 for Landsat -> [0-255])
102           Options: 7, 8, 10, 16
103           Default: 8
104

DESCRIPTION

106       i.vi calculates vegetation indices based on biophysical parameters.
107
108           ·   ARVI: atmospherically resistant vegetation indices
109
110           ·   DVI: Difference Vegetation Index
111
112           ·   EVI: Enhanced Vegetation Index
113
114           ·   EVI2: Enhanced Vegetation Index 2
115
116           ·   GARI: Green atmospherically resistant vegetation index
117
118           ·   GEMI: Global Environmental Monitoring Index
119
120           ·   GVI: Green Vegetation Index
121
122           ·   IPVI: Infrared Percentage Vegetation Index
123
124           ·   MSAVI2: second Modified Soil Adjusted Vegetation Index
125
126           ·   MSAVI: Modified Soil Adjusted Vegetation Index
127
128           ·   NDVI: Normalized Difference Vegetation Index
129
130           ·   NDWI: Normalized Difference Water Index
131
132           ·   PVI: Perpendicular Vegetation Index
133
134           ·   RVI: ratio vegetation index
135
136           ·   SAVI: Soil Adjusted Vegetation Index
137
138           ·   SR: Simple Vegetation ratio
139
140           ·   WDVI: Weighted Difference Vegetation Index
141
142   Background for users new to remote sensing
143       Vegetation Indices are often considered the entry point of remote sens‐
144       ing  for  Earth land monitoring. They are suffering from their success,
145       in terms that often people tend to harvest satellite images from online
146       sources and use them directly in this module.
147
148       From Digital number to Radiance:
149       Satellite imagery is commonly stored in Digital Number (DN) for storage
150       purposes; e.g., Landsat5 data is stored in 8bit values (ranging from  0
151       to 255), other satellites maybe stored in 10 or 16 bits. If the data is
152       provided in DN, this implies that this imagery is  "uncorrected".  What
153       this means is that the image is what the satellite sees at its position
154       and altitude in space (stored in DN).  This is not the signal at ground
155       yet.  We call this data at-satellite or at-sensor. Encoded in the 8bits
156       (or more) is the amount of energy  sensed  by  the  sensor  inside  the
157       satellite  platform.  This  energy is called radiance-at-sensor. Gener‐
158       ally, satellites image providers  encode  the  radiance-at-sensor  into
159       8bit  (or  more) through an affine transform equation (y=ax+b). In case
160       of using Landsat imagery, look at the i.landsat.toar for an easy way to
161       transform  DN  to  radiance-at-sensor.  If  using  Aster  data, try the
162       i.aster.toar module.
163
164       From Radiance to Reflectance:
165       Finally, once having obtained the radiance at sensor values, still  the
166       atmosphere is between sensor and Earth’s surface. This fact needs to be
167       corrected to account for  the  atmospheric  interaction  with  the  sun
168       energy  that the vegetation reflects back into space.  This can be done
169       in two ways for Landsat. The simple way is through i.landsat.toar,  use
170       e.g.  the  DOS  correction.  The more accurate way is by using i.atcorr
171       (which works for many satellite sensors). Once the atmospheric  correc‐
172       tion has been applied to the satellite data, data vales are called sur‐
173       face reflectance.  Surface reflectance is ranging from 0.0 to 1.0 theo‐
174       retically (and absolutely). This level of data correction is the proper
175       level of correction to use with i.vi.
176
177   Vegetation Indices
178       ARVI: Atmospheric Resistant Vegetation Index
179
180       ARVI is resistant to atmospheric effects (in comparison  to  the  NDVI)
181       and  is  accomplished  by a self correcting process for the atmospheric
182       effect in the red channel, using the difference in the radiance between
183       the blue and the red channels (Kaufman and Tanre 1996).
184       arvi( redchan, nirchan, bluechan )
185       ARVI = (nirchan - (2.0*redchan - bluechan)) /
186              ( nirchan + (2.0*redchan - bluechan))
187
188       DVI: Difference Vegetation Index
189       dvi( redchan, nirchan )
190       DVI = ( nirchan - redchan )
191
192       EVI: Enhanced Vegetation Index
193
194       The  enhanced  vegetation index (EVI) is an optimized index designed to
195       enhance the vegetation signal with improved sensitivity in high biomass
196       regions and improved vegetation monitoring through a de-coupling of the
197       canopy background signal  and  a  reduction  in  atmosphere  influences
198       (Huete A.R., Liu H.Q., Batchily K., van Leeuwen W. (1997). A comparison
199       of vegetation indices global set of TM  images  for  EOS-MODIS.  Remote
200       Sensing of Environment, 59:440-451).
201       evi( bluechan, redchan, nirchan )
202       EVI = 2.5 * ( nirchan - redchan ) /
203             ( nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0 )
204
205       EVI2: Enhanced Vegetation Index 2
206
207       A 2-band EVI (EVI2), without a blue band, which has the best similarity
208       with  the  3-band  EVI,  particularly  when  atmospheric  effects   are
209       insignificant  and  data  quality  is good (Zhangyan Jiang ; Alfredo R.
210       Huete ; Youngwook Kim and Kamel Didan 2-band enhanced vegetation  index
211       without a blue band and its application to AVHRR data. Proc. SPIE 6679,
212       Remote Sensing and Modeling of Ecosystems for Sustainability IV, 667905
213       (october 09, 2007) doi:10.1117/12.734933).
214       evi2( redchan, nirchan )
215       EVI2 = 2.5 * ( nirchan - redchan ) /
216              ( nirchan + 2.4 * redchan + 1.0 )
217
218       GARI: green atmospherically resistant vegetation index
219
220       The  formula was actually defined: Gitelson, Anatoly A.; Kaufman, Yoram
221       J.; Merzlyak, Mark N. (1996) Use of a green channel in  remote  sensing
222       of  global vegetation from EOS- MODIS, Remote Sensing of Environment 58
223       (3), 289-298.  doi:10.1016/s0034-4257(96)00072-7
224       gari( redchan, nirchan, bluechan, greenchan )
225       GARI = ( nirchan - (greenchan - (bluechan - redchan))) /
226              ( nirchan + (greenchan - (bluechan - redchan)))
227
228       GEMI: Global Environmental Monitoring Index
229       gemi( redchan, nirchan )
230       GEMI = (( (2*((nirchan * nirchan)-(redchan * redchan)) +
231              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5)) *
232              (1 - 0.25 * (2*((nirchan * nirchan)-(redchan * redchan)) +
233              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5))) -
234              ( (redchan - 0.125) / (1 - redchan))
235
236       GVI: Green Vegetation Index
237       gvi( bluechan, greenchan, redchan, nirchan, chan5chan, chan7chan)
238       GVI = ( -0.2848 * bluechan - 0.2435 * greenchan -
239             0.5436 * redchan + 0.7243 * nirchan + 0.0840 * chan5chan-
240             0.1800 * chan7chan)
241
242       IPVI: Infrared Percentage Vegetation Index
243       ipvi( redchan, nirchan )
244       IPVI = nirchan/(nirchan+redchan)
245
246       MSAVI2: second Modified Soil Adjusted Vegetation Index
247       msavi2( redchan, nirchan )
248       MSAVI2 = (1/2)*(2*NIR+1-sqrt((2*NIR+1)^2-8*(NIR-red)))
249
250       MSAVI: Modified Soil Adjusted Vegetation Index
251       msavi( redchan, nirchan )
252       MSAVI = s(NIR-s*red-a) / (a*NIR+red-a*s+X*(1+s*s))
253       where a is the soil line intercept, s is the soil  line  slope,  and  X
254         is  an adjustment factor which is set to minimize soil noise (0.08 in
255       original papers).
256
257       NDVI: Normalized Difference Vegetation Index
258       ndvi( redchan, nirchan )
259       Satellite specific band numbers ([NIR, Red]):
260         MSS Bands        = [ 7,  5]
261         TM1-5,7 Bands    = [ 4,  3]
262         TM8 Bands        = [ 5,  4]
263         Sentinel-2 Bands = [ 8,  4]
264         AVHRR Bands      = [ 2,  1]
265         SPOT XS Bands    = [ 3,  2]
266         AVIRIS Bands     = [51, 29]
267       NDVI = (NIR - Red) / (NIR + Red)
268
269       NDWI: Normalized Difference Water Index (after McFeeters, 1996)
270
271       This index is suitable to detect water bodies.
272       ndwi( greenchan, nirchan )
273       NDWI = (green - NIR) / (green + NIR)
274
275       The water content of leaves can be estimated with another  NDWI  (after
276       Gao, 1996):
277       ndwi( greenchan, nirchan )
278       NDWI = (NIR - SWIR) / (NIR + SWIR)
279       This  index  is  important for monitoring vegetation health (not imple‐
280       mented).
281
282       PVI: Perpendicular Vegetation Index
283       pvi( redchan, nirchan )
284       PVI = sin(a)NIR-cos(a)red
285       for a isovegetation lines (lines of equal vegetation) would all be par‐
286       allel to the soil line therefore a=1.
287
288       SAVI: Soil Adjusted Vegetation Index
289       savi( redchan, nirchan )
290       SAVI = ((1.0+0.5)*(nirchan - redchan)) / (nirchan + redchan +0.5)
291
292       SR: Simple Vegetation ratio
293       sr( redchan, nirchan )
294       SR = (nirchan/redchan)
295
296       VARI:  Visible  Atmospherically  Resistant  Index  VARI was designed to
297       introduce an atmospheric self-correction (Gitelson A.A., Kaufman  Y.J.,
298       Stark  R., Rundquist D., 2002. Novel algorithms for estimation of vege‐
299       tation fraction Remote Sensing of Environment (80), pp76-87.)
300       vari = ( bluechan, greenchan, redchan )
301       VARI = (green - red ) / (green + red - blue)
302
303       WDVI: Weighted Difference Vegetation Index
304       wdvi( redchan, nirchan, soil_line_weight )
305       WDVI = nirchan - a * redchan
306       if(soil_weight_line == None):
307          a = 1.0   #slope of soil line
308

EXAMPLES

310   Calculation of DVI
311       The calculation of DVI from the reflectance values is done as follows:
312       g.region raster=band.1 -p
313       i.vi blue=band.1 red=band.3 nir=band.4 viname=dvi output=dvi
314       r.univar -e dvi
315
316   Calculation of EVI
317       The calculation of EVI from the reflectance values is done as follows:
318       g.region raster=band.1 -p
319       i.vi blue=band.1 red=band.3 nir=band.4 viname=evi output=evi
320       r.univar -e evi
321
322   Calculation of EVI2
323       The calculation of EVI2 from the reflectance values is done as follows:
324       g.region raster=band.3 -p
325       i.vi red=band.3 nir=band.4 viname=evi2 output=evi2
326       r.univar -e evi2
327
328   Calculation of GARI
329       The calculation of GARI from the reflectance values is done as follows:
330       g.region raster=band.1 -p
331       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 viname=gari output=gari
332       r.univar -e gari
333
334   Calculation of GEMI
335       The calculation of GEMI from the reflectance values is done as follows:
336       g.region raster=band.3 -p
337       i.vi red=band.3 nir=band.4 viname=gemi output=gemi
338       r.univar -e gemi
339
340   Calculation of GVI
341       The calculation of GVI (Green Vegetation Index - Tasseled Cap) from the
342       reflectance values is done as follows:
343       g.region raster=band.3 -p
344       # assuming Landsat-7
345       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 band5=band.5 band7=band.7 viname=gvi output=gvi
346       r.univar -e gvi
347
348   Calculation of IPVI
349       The calculation of IPVI from the reflectance values is done as follows:
350       g.region raster=band.3 -p
351       i.vi red=band.3 nir=band.4 viname=ipvi output=ipvi
352       r.univar -e ipvi
353
354   Calculation of MSAVI
355       The  calculation  of  MSAVI from the reflectance values is done as fol‐
356       lows:
357       g.region raster=band.3 -p
358       i.vi red=band.3 nir=band.4 viname=msavi output=msavi
359       r.univar -e msavi
360
361   Calculation of NDVI
362       The calculation of NDVI from the reflectance values is done as follows:
363       g.region raster=band.3 -p
364       i.vi red=band.3 nir=band.4 viname=ndvi output=ndvi
365       r.univar -e ndvi
366
367   Calculation of NDWI
368       The calculation of NDWI from the reflectance values is done as follows:
369       g.region raster=band.2 -p
370       i.vi green=band.2 nir=band.4 viname=ndwi output=ndwi
371       r.colors ndwi color=byg -n
372       r.univar -e ndwi
373
374   Calculation of PVI
375       The calculation of PVI from the reflectance values is done as follows:
376       g.region raster=band.3 -p
377       i.vi red=band.3 nir=band.4 viname=pvi output=pvi
378       r.univar -e pvi
379
380   Calculation of SAVI
381       The calculation of SAVI from the reflectance values is done as follows:
382       g.region raster=band.3 -p
383       i.vi red=band.3 nir=band.4 viname=savi output=savi
384       r.univar -e savi
385
386   Calculation of SR
387       The calculation of SR from the reflectance values is done as follows:
388       g.region raster=band.3 -p
389       i.vi red=band.3 nir=band.4 viname=sr output=sr
390       r.univar -e sr
391
392   Calculation of VARI
393       The calculation of VARI from the reflectance values is done as follows:
394       g.region raster=band.3 -p
395       i.vi blue=band.2 green=band.3 red=band.4 viname=vari output=vari
396       r.univar -e vari
397
398   Landsat TM7 example
399       The following examples are based on a LANDSAT TM7 scene included in the
400       North Carolina sample dataset.
401
402   Preparation: DN to reflectance
403       As  a first step, the original DN (digital number) pixel values must be
404       converted to reflectance using i.landsat.toar. To do so, we make a copy
405       (or rename the channels) to match i.landsat.toar’s input scheme:
406
407       g.copy raster=lsat7_2002_10,lsat7_2002.1
408       g.copy raster=lsat7_2002_20,lsat7_2002.2
409       g.copy raster=lsat7_2002_30,lsat7_2002.3
410       g.copy raster=lsat7_2002_40,lsat7_2002.4
411       g.copy raster=lsat7_2002_50,lsat7_2002.5
412       g.copy raster=lsat7_2002_61,lsat7_2002.61
413       g.copy raster=lsat7_2002_62,lsat7_2002.62
414       g.copy raster=lsat7_2002_70,lsat7_2002.7
415       g.copy raster=lsat7_2002_80,lsat7_2002.8
416
417       Calculation of reflectance values from DN using DOS1 (metadata obtained
418       from p016r035_7x20020524.met.gz):
419
420       i.landsat.toar input=lsat7_2002. output=lsat7_2002_toar. sensor=tm7 \
421         method=dos1 date=2002-05-24 sun_elevation=64.7730999 \
422         product_date=2004-02-12 gain=HHHLHLHHL
423       The  resulting  Landsat  channels  are   names   lsat7_2002_toar.1   ..
424       lsat7_2002_toar.8.
425
426   Calculation of NDVI
427       The calculation of NDVI from the reflectance values is done as follows:
428       g.region raster=lsat7_2002_toar.3 -p
429       i.vi red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 viname=ndvi \
430            output=lsat7_2002.ndvi
431       r.colors lsat7_2002.ndvi color=ndvi
432       d.mon wx0
433       d.rast.leg lsat7_2002.ndvi
434       North Carolina dataset: NDVI
435
436   Calculation of ARVI
437       The calculation of ARVI from the reflectance values is done as follows:
438       g.region raster=lsat7_2002_toar.3 -p
439       i.vi blue=lsat7_2002_toar.1 red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 \
440            viname=arvi output=lsat7_2002.arvi
441       d.mon wx0
442       d.rast.leg lsat7_2002.arvi
443       North Carolina dataset: ARVI
444
445   Calculation of GARI
446       The calculation of GARI from the reflectance values is done as follows:
447       g.region raster=lsat7_2002_toar.3 -p
448       i.vi blue=lsat7_2002_toar.1 green=lsat7_2002_toar.2 red=lsat7_2002_toar.3 \
449            nir=lsat7_2002_toar.4 viname=gari output=lsat7_2002.gari
450       d.mon wx0
451       d.rast.leg lsat7_2002.gari
452       North Carolina dataset: GARI
453

NOTES

455       Originally from kepler.gps.caltech.edu (FAQ):
456
457       A FAQ on Vegetation in Remote Sensing
458       Written  by  Terrill W. Ray, Div. of Geological and Planetary Sciences,
459       California  Institute  of  Technology,  email:   terrill@mars1.gps.cal‐
460       tech.edu
461
462       Snail Mail:  Terrill Ray
463       Division of Geological and Planetary Sciences
464       Caltech, Mail Code 170-25
465       Pasadena, CA  91125
466

SEE ALSO

468        i.albedo, i.aster.toar, i.landsat.toar, i.atcorr, i.tasscap
469

REFERENCES

471       AVHRR, Landsat TM5:
472
473           ·   Bastiaanssen,  W.G.M.,  1995.  Regionalization  of surface flux
474               densities and  moisture  indicators  in  composite  terrain;  a
475               remote sensing approach under clear skies in mediterranean cli‐
476               mates. PhD thesis, Wageningen Agricultural Univ.,  The  Nether‐
477               land, 271 pp.  (PDF)
478
479           ·   Index DataBase: List of available Indices
480

AUTHORS

482       Baburao Kamble, Asian Institute of Technology, Thailand
483       Yann Chemin, Asian Institute of Technology, Thailand
484

SOURCE CODE

486       Available at: i.vi source code (history)
487
488       Main  index | Imagery index | Topics index | Keywords index | Graphical
489       index | Full index
490
491       © 2003-2019 GRASS Development Team, GRASS GIS 7.8.2 Reference Manual
492
493
494
495GRASS 7.8.2                                                            i.vi(1)
Impressum