1pem(3)                              OpenSSL                             pem(3)
2
3
4

NAME

6       PEM - PEM routines
7

SYNOPSIS

9        #include <openssl/pem.h>
10
11        EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
12                                               pem_password_cb *cb, void *u);
13
14        EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
15                                               pem_password_cb *cb, void *u);
16
17        int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
18                                               unsigned char *kstr, int klen,
19                                               pem_password_cb *cb, void *u);
20
21        int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
22                                               unsigned char *kstr, int klen,
23                                               pem_password_cb *cb, void *u);
24
25        int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
26                                               char *kstr, int klen,
27                                               pem_password_cb *cb, void *u);
28
29        int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
30                                               char *kstr, int klen,
31                                               pem_password_cb *cb, void *u);
32
33        int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
34                                               char *kstr, int klen,
35                                               pem_password_cb *cb, void *u);
36
37        int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
38                                               char *kstr, int klen,
39                                               pem_password_cb *cb, void *u);
40
41        EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
42                                               pem_password_cb *cb, void *u);
43
44        EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
45                                               pem_password_cb *cb, void *u);
46
47        int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
48        int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
49
50        RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
51                                               pem_password_cb *cb, void *u);
52
53        RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
54                                               pem_password_cb *cb, void *u);
55
56        int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
57                                               unsigned char *kstr, int klen,
58                                               pem_password_cb *cb, void *u);
59
60        int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
61                                               unsigned char *kstr, int klen,
62                                               pem_password_cb *cb, void *u);
63
64        RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
65                                               pem_password_cb *cb, void *u);
66
67        RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
68                                               pem_password_cb *cb, void *u);
69
70        int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
71
72        int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
73
74        RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
75                                               pem_password_cb *cb, void *u);
76
77        RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
78                                               pem_password_cb *cb, void *u);
79
80        int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
81
82        int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
83
84        DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
85                                               pem_password_cb *cb, void *u);
86
87        DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
88                                               pem_password_cb *cb, void *u);
89
90        int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
91                                               unsigned char *kstr, int klen,
92                                               pem_password_cb *cb, void *u);
93
94        int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
95                                               unsigned char *kstr, int klen,
96                                               pem_password_cb *cb, void *u);
97
98        DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
99                                               pem_password_cb *cb, void *u);
100
101        DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
102                                               pem_password_cb *cb, void *u);
103
104        int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
105
106        int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
107
108        DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
109
110        DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
111
112        int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
113
114        int PEM_write_DSAparams(FILE *fp, DSA *x);
115
116        DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
117
118        DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
119
120        int PEM_write_bio_DHparams(BIO *bp, DH *x);
121
122        int PEM_write_DHparams(FILE *fp, DH *x);
123
124        X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
125
126        X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
127
128        int PEM_write_bio_X509(BIO *bp, X509 *x);
129
130        int PEM_write_X509(FILE *fp, X509 *x);
131
132        X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
133
134        X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
135
136        int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
137
138        int PEM_write_X509_AUX(FILE *fp, X509 *x);
139
140        X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
141                                               pem_password_cb *cb, void *u);
142
143        X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
144                                               pem_password_cb *cb, void *u);
145
146        int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
147
148        int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
149
150        int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
151
152        int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
153
154        X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
155                                               pem_password_cb *cb, void *u);
156        X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
157                                               pem_password_cb *cb, void *u);
158        int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
159        int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
160
161        PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
162
163        PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
164
165        int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
166
167        int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
168
169        NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
170                                                       NETSCAPE_CERT_SEQUENCE **x,
171                                                       pem_password_cb *cb, void *u);
172
173        NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
174                                                       NETSCAPE_CERT_SEQUENCE **x,
175                                                       pem_password_cb *cb, void *u);
176
177        int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
178
179        int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
180

DESCRIPTION

182       The PEM functions read or write structures in PEM format. In this sense
183       PEM format is simply base64 encoded data surrounded by header lines.
184
185       For more details about the meaning of arguments see the PEM FUNCTION
186       ARGUMENTS section.
187
188       Each operation has four functions associated with it. For clarity the
189       term "foobar functions" will be used to collectively refer to the
190       PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar() and
191       PEM_write_foobar() functions.
192
193       The PrivateKey functions read or write a private key in PEM format
194       using an EVP_PKEY structure. The write routines use "traditional" pri‐
195       vate key format and can handle both RSA and DSA private keys. The read
196       functions can additionally transparently handle PKCS#8 format encrypted
197       and unencrypted keys too.
198
199       PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a
200       private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
201       format using PKCS#5 v2.0 password based encryption algorithms. The
202       cipher argument specifies the encryption algoritm to use: unlike all
203       other PEM routines the encryption is applied at the PKCS#8 level and
204       not in the PEM headers. If cipher is NULL then no encryption is used
205       and a PKCS#8 PrivateKeyInfo structure is used instead.
206
207       PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
208       also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo how‐
209       ever it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The
210       algorithm to use is specified in the nid parameter and should be the
211       NID of the corresponding OBJECT IDENTIFIER (see NOTES section).
212
213       The PUBKEY functions process a public key using an EVP_PKEY structure.
214       The public key is encoded as a SubjectPublicKeyInfo structure.
215
216       The RSAPrivateKey functions process an RSA private key using an RSA
217       structure. It handles the same formats as the PrivateKey functions but
218       an error occurs if the private key is not RSA.
219
220       The RSAPublicKey functions process an RSA public key using an RSA
221       structure. The public key is encoded using a PKCS#1 RSAPublicKey struc‐
222       ture.
223
224       The RSA_PUBKEY functions also process an RSA public key using an RSA
225       structure. However the public key is encoded using a SubjectPublicKey‐
226       Info structure and an error occurs if the public key is not RSA.
227
228       The DSAPrivateKey functions process a DSA private key using a DSA
229       structure. It handles the same formats as the PrivateKey functions but
230       an error occurs if the private key is not DSA.
231
232       The DSA_PUBKEY functions process a DSA public key using a DSA struc‐
233       ture. The public key is encoded using a SubjectPublicKeyInfo structure
234       and an error occurs if the public key is not DSA.
235
236       The DSAparams functions process DSA parameters using a DSA structure.
237       The parameters are encoded using a foobar structure.
238
239       The DHparams functions process DH parameters using a DH structure. The
240       parameters are encoded using a PKCS#3 DHparameter structure.
241
242       The X509 functions process an X509 certificate using an X509 structure.
243       They will also process a trusted X509 certificate but any trust set‐
244       tings are discarded.
245
246       The X509_AUX functions process a trusted X509 certificate using an X509
247       structure.
248
249       The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate
250       request using an X509_REQ structure. The X509_REQ write functions use
251       CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions
252       use NEW CERTIFICATE REQUEST (as required by some CAs). The X509_REQ
253       read functions will handle either form so there are no X509_REQ_NEW
254       read functions.
255
256       The X509_CRL functions process an X509 CRL using an X509_CRL structure.
257
258       The PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7 struc‐
259       ture.
260
261       The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate
262       Sequence using a NETSCAPE_CERT_SEQUENCE structure.
263

PEM FUNCTION ARGUMENTS

265       The PEM functions have many common arguments.
266
267       The bp BIO parameter (if present) specifies the BIO to read from or
268       write to.
269
270       The fp FILE parameter (if present) specifies the FILE pointer to read
271       from or write to.
272
273       The PEM read functions all take an argument TYPE **x and return a TYPE
274       * pointer. Where TYPE is whatever structure the function uses. If x is
275       NULL then the parameter is ignored. If x is not NULL but *x is NULL
276       then the structure returned will be written to *x. If neither x nor *x
277       is NULL then an attempt is made to reuse the structure at *x (but see
278       BUGS and EXAMPLES sections).  Irrespective of the value of x a pointer
279       to the structure is always returned (or NULL if an error occurred).
280
281       The PEM functions which write private keys take an enc parameter which
282       specifies the encryption algorithm to use, encryption is done at the
283       PEM level. If this parameter is set to NULL then the private key is
284       written in unencrypted form.
285
286       The cb argument is the callback to use when querying for the pass
287       phrase used for encrypted PEM structures (normally only private keys).
288
289       For the PEM write routines if the kstr parameter is not NULL then klen
290       bytes at kstr are used as the passphrase and cb is ignored.
291
292       If the cb parameters is set to NULL and the u parameter is not NULL
293       then the u parameter is interpreted as a null terminated string to use
294       as the passphrase. If both cb and u are NULL then the default callback
295       routine is used which will typically prompt for the passphrase on the
296       current terminal with echoing turned off.
297
298       The default passphrase callback is sometimes inappropriate (for example
299       in a GUI application) so an alternative can be supplied. The callback
300       routine has the following form:
301
302        int cb(char *buf, int size, int rwflag, void *u);
303
304       buf is the buffer to write the passphrase to. size is the maximum
305       length of the passphrase (i.e. the size of buf). rwflag is a flag which
306       is set to 0 when reading and 1 when writing. A typical routine will ask
307       the user to verify the passphrase (for example by prompting for it
308       twice) if rwflag is 1. The u parameter has the same value as the u
309       parameter passed to the PEM routine. It allows arbitrary data to be
310       passed to the callback by the application (for example a window handle
311       in a GUI application). The callback must return the number of charac‐
312       ters in the passphrase or 0 if an error occurred.
313

EXAMPLES

315       Although the PEM routines take several arguments in almost all applica‐
316       tions most of them are set to 0 or NULL.
317
318       Read a certificate in PEM format from a BIO:
319
320        X509 *x;
321        x = PEM_read_bio_X509(bp, NULL, 0, NULL);
322        if (x == NULL)
323               {
324               /* Error */
325               }
326
327       Alternative method:
328
329        X509 *x = NULL;
330        if (!PEM_read_bio_X509(bp, &x, 0, NULL))
331               {
332               /* Error */
333               }
334
335       Write a certificate to a BIO:
336
337        if (!PEM_write_bio_X509(bp, x))
338               {
339               /* Error */
340               }
341
342       Write an unencrypted private key to a FILE pointer:
343
344        if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
345               {
346               /* Error */
347               }
348
349       Write a private key (using traditional format) to a BIO using triple
350       DES encryption, the pass phrase is prompted for:
351
352        if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
353               {
354               /* Error */
355               }
356
357       Write a private key (using PKCS#8 format) to a BIO using triple DES
358       encryption, using the pass phrase "hello":
359
360        if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
361               {
362               /* Error */
363               }
364
365       Read a private key from a BIO using the pass phrase "hello":
366
367        key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
368        if (key == NULL)
369               {
370               /* Error */
371               }
372
373       Read a private key from a BIO using a pass phrase callback:
374
375        key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
376        if (key == NULL)
377               {
378               /* Error */
379               }
380
381       Skeleton pass phrase callback:
382
383        int pass_cb(char *buf, int size, int rwflag, void *u);
384               {
385               int len;
386               char *tmp;
387               /* We'd probably do something else if 'rwflag' is 1 */
388               printf("Enter pass phrase for \"%s\"\n", u);
389
390               /* get pass phrase, length 'len' into 'tmp' */
391               tmp = "hello";
392               len = strlen(tmp);
393
394               if (len <= 0) return 0;
395               /* if too long, truncate */
396               if (len > size) len = size;
397               memcpy(buf, tmp, len);
398               return len;
399               }
400

NOTES

402       The old PrivateKey write routines are retained for compatibility.  New
403       applications should write private keys using the
404       PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
405       because they are more secure (they use an iteration count of 2048
406       whereas the traditional routines use a count of 1) unless compatibility
407       with older versions of OpenSSL is important.
408
409       The PrivateKey read routines can be used in all applications because
410       they handle all formats transparently.
411
412       A frequent cause of problems is attempting to use the PEM routines like
413       this:
414
415        X509 *x;
416        PEM_read_bio_X509(bp, &x, 0, NULL);
417
418       this is a bug because an attempt will be made to reuse the data at x
419       which is an uninitialised pointer.
420

PEM ENCRYPTION FORMAT

422       This old PrivateKey routines use a non standard technique for encryp‐
423       tion.
424
425       The private key (or other data) takes the following form:
426
427        -----BEGIN RSA PRIVATE KEY-----
428        Proc-Type: 4,ENCRYPTED
429        DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
430
431        ...base64 encoded data...
432        -----END RSA PRIVATE KEY-----
433
434       The line beginning DEK-Info contains two comma separated pieces of
435       information: the encryption algorithm name as used by EVP_get_cipherby‐
436       name() and an 8 byte salt encoded as a set of hexadecimal digits.
437
438       After this is the base64 encoded encrypted data.
439
440       The encryption key is determined using EVP_bytestokey(), using salt and
441       an iteration count of 1. The IV used is the value of salt and *not* the
442       IV returned by EVP_bytestokey().
443

BUGS

445       The PEM read routines in some versions of OpenSSL will not correctly
446       reuse an existing structure. Therefore the following:
447
448        PEM_read_bio_X509(bp, &x, 0, NULL);
449
450       where x already contains a valid certificate, may not work, whereas:
451
452        X509_free(x);
453        x = PEM_read_bio_X509(bp, NULL, 0, NULL);
454
455       is guaranteed to work.
456

RETURN CODES

458       The read routines return either a pointer to the structure read or NULL
459       if an error occurred.
460
461       The write routines return 1 for success or 0 for failure.
462
463
464
4650.9.8b                            2004-03-21                            pem(3)
Impressum