1DLAG2(1)            LAPACK auxiliary routine (version 3.1)            DLAG2(1)
2
3
4

NAME

6       DLAG2 - the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w
7       B, with scaling as necessary to avoid over-/underflow
8

SYNOPSIS

10       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,  WI
11                         )
12
13           INTEGER       LDA, LDB
14
15           DOUBLE        PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
16
17           DOUBLE        PRECISION A( LDA, * ), B( LDB, * )
18

PURPOSE

20       DLAG2  computes the eigenvalues of a 2 x 2 generalized eigenvalue prob‐
21       lem  A - w B, with scaling as necessary to avoid over-/underflow.
22
23       The scaling factor "s" results in a modified eigenvalue equation
24
25           s A - w B
26
27       where  s  is a non-negative scaling factor chosen so that  w,  w B, and
28       s A  do not overflow and, if possible, do not underflow, either.
29
30

ARGUMENTS

32       A       (input) DOUBLE PRECISION array, dimension (LDA, 2)
33               On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm is
34               less than 1/SAFMIN.  Entries less than sqrt(SAFMIN)*norm(A) are
35               subject to being treated as zero.
36
37       LDA     (input) INTEGER
38               The leading dimension of the array A.  LDA >= 2.
39
40       B       (input) DOUBLE PRECISION array, dimension (LDB, 2)
41               On  entry,  the 2 x 2 upper triangular matrix B.  It is assumed
42               that the one-norm of B is less than  1/SAFMIN.   The  diagonals
43               should  be at least sqrt(SAFMIN) times the largest element of B
44               (in absolute value); if a diagonal is smaller than  that,  then
45               +/- sqrt(SAFMIN) will be used instead of that diagonal.
46
47       LDB     (input) INTEGER
48               The leading dimension of the array B.  LDB >= 2.
49
50       SAFMIN  (input) DOUBLE PRECISION
51               The  smallest  positive number s.t. 1/SAFMIN does not overflow.
52               (This should always be DLAMCH('S') --  it  is  an  argument  in
53               order to avoid having to call DLAMCH frequently.)
54
55       SCALE1  (output) DOUBLE PRECISION
56               A scaling factor used to avoid over-/underflow in the eigenval‐
57               ue equation which defines the first eigenvalue.  If the  eigen‐
58               values are complex, then the eigenvalues are ( WR1  +/-  WI i )
59               / SCALE1  (which may lie outside  the  exponent  range  of  the
60               machine),  SCALE1=SCALE2,  and  SCALE1 will always be positive.
61               If the eigenvalues are real, then the first  (real)  eigenvalue
62               is   WR1  / SCALE1 , but this may overflow or underflow, and in
63               fact, SCALE1 may be zero or less than the underflow  threshhold
64               if the exact eigenvalue is sufficiently large.
65
66       SCALE2  (output) DOUBLE PRECISION
67               A scaling factor used to avoid over-/underflow in the eigenval‐
68               ue equation which defines the second eigenvalue.  If the eigen‐
69               values are complex, then SCALE2=SCALE1.  If the eigenvalues are
70               real, then the second (real) eigenvalue is WR2 / SCALE2  ,  but
71               this may overflow or underflow, and in fact, SCALE2 may be zero
72               or less than the underflow threshhold if the  exact  eigenvalue
73               is sufficiently large.
74
75       WR1     (output) DOUBLE PRECISION
76               If  the eigenvalue is real, then WR1 is SCALE1 times the eigen‐
77               value closest to the (2,2) element of A B**(-1).  If the eigen‐
78               value is complex, then WR1=WR2 is SCALE1 times the real part of
79               the eigenvalues.
80
81       WR2     (output) DOUBLE PRECISION
82               If the eigenvalue is real, then WR2 is SCALE2 times  the  other
83               eigenvalue.   If  the  eigenvalue  is  complex, then WR1=WR2 is
84               SCALE1 times the real part of the eigenvalues.
85
86       WI      (output) DOUBLE PRECISION
87               If the eigenvalue is real, then WI is zero.  If the  eigenvalue
88               is  complex,  then WI is SCALE1 times the imaginary part of the
89               eigenvalues.  WI will always be non-negative.
90
91
92
93 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                        DLAG2(1)
Impressum