1BN_add(3) OpenSSL BN_add(3)
2
3
4
6 BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
7 BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
8 arithmetic operations on BIGNUMs
9
11 #include <openssl/bn.h>
12
13 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
14
15 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
16
17 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
18
19 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
20
21 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
22 BN_CTX *ctx);
23
24 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
25
26 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
27
28 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
29 BN_CTX *ctx);
30
31 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
32 BN_CTX *ctx);
33
34 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
35 BN_CTX *ctx);
36
37 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
38
39 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
40
41 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
42 const BIGNUM *m, BN_CTX *ctx);
43
44 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
45
47 BN_add() adds a and b and places the result in r ("r=a+b"). r may be
48 the same BIGNUM as a or b.
49
50 BN_sub() subtracts b from a and places the result in r ("r=a-b").
51
52 BN_mul() multiplies a and b and places the result in r ("r=a*b"). r
53 may be the same BIGNUM as a or b. For multiplication by powers of 2,
54 use BN_lshift(3).
55
56 BN_sqr() takes the square of a and places the result in r ("r=a^2"). r
57 and a may be the same BIGNUM. This function is faster than
58 BN_mul(r,a,a).
59
60 BN_div() divides a by d and places the result in dv and the remainder
61 in rem ("dv=a/d, rem=a%d"). Either of dv and rem may be NULL, in which
62 case the respective value is not returned. The result is rounded
63 towards zero; thus if a is negative, the remainder will be zero or
64 negative. For division by powers of 2, use BN_rshift(3).
65
66 BN_mod() corresponds to BN_div() with dv set to NULL.
67
68 BN_nnmod() reduces a modulo m and places the non-negative remainder in
69 r.
70
71 BN_mod_add() adds a to b modulo m and places the non-negative result in
72 r.
73
74 BN_mod_sub() subtracts b from a modulo m and places the non-negative
75 result in r.
76
77 BN_mod_mul() multiplies a by b and finds the non-negative remainder
78 respective to modulus m ("r=(a*b) mod m"). r may be the same BIGNUM as
79 a or b. For more efficient algorithms for repeated computations using
80 the same modulus, see BN_mod_mul_montgomery(3) and
81 BN_mod_mul_reciprocal(3).
82
83 BN_mod_sqr() takes the square of a modulo m and places the result in r.
84
85 BN_exp() raises a to the p-th power and places the result in r
86 ("r=a^p"). This function is faster than repeated applications of
87 BN_mul().
88
89 BN_mod_exp() computes a to the p-th power modulo m ("r=a^p % m"). This
90 function uses less time and space than BN_exp().
91
92 BN_gcd() computes the greatest common divisor of a and b and places the
93 result in r. r may be the same BIGNUM as a or b.
94
95 For all functions, ctx is a previously allocated BN_CTX used for
96 temporary variables; see BN_CTX_new(3).
97
98 Unless noted otherwise, the result BIGNUM must be different from the
99 arguments.
100
102 For all functions, 1 is returned for success, 0 on error. The return
103 value should always be checked (e.g., "if (!BN_add(r,a,b)) goto err;").
104 The error codes can be obtained by ERR_get_error(3).
105
107 bn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)
108
110 BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
111 BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
112 OpenSSL. The ctx argument to BN_mul() was added in SSLeay 0.9.1b.
113 BN_exp() appeared in SSLeay 0.9.0. BN_nnmod(), BN_mod_add(),
114 BN_mod_sub(), and BN_mod_sqr() were added in OpenSSL 0.9.7.
115
116
117
1181.0.2k 2017-01-26 BN_add(3)