1SPLAT!(1)                                 KD2BD          Software
2SPLAT!(1)
3
4
5
6NNAAMMEE
7       splat An RF SSignal PPropagation, LLoss, AAnd TTerrain analysis
8tool
9
10SSYYNNOOPPSSIISS
11       splat   [‐t   _t_r_a_n_s_m_i_t_t_e_r___s_i_t_e_._q_t_h] [‐r _r_e_c_e_i_v_e_r___s_i_t_e_._q_t_h]
12[‐c _r_x _a_n_t_e_n_n_a
13       _h_e_i_g_h_t _f_o_r _L_O_S _c_o_v_e_r_a_g_e  _a_n_a_l_y_s_i_s  _(_f_e_e_t_/_m_e_t_e_r_s_)  _(_f_l_o_a_t_)]
14[‐L _r_x  _a_n_t_e_n_n_a
15       _h_e_i_g_h_t  _f_o_r  _L_o_n_g_l_e_y_‐_R_i_c_e  _c_o_v_e_r_a_g_e _a_n_a_l_y_s_i_s _(_f_e_e_t_/_m_e_t_e_r_s_)
16_(_f_l_o_a_t_)] [‐p
17       _t_e_r_r_a_i_n___p_r_o_f_i_l_e_._e_x_t]   [‐e   _e_l_e_v_a_t_i_o_n___p_r_o_f_i_l_e_._e_x_t]    [‐h
18_h_e_i_g_h_t___p_r_o_f_i_l_e_._e_x_t]
19       [‐H           _n_o_r_m_a_l_i_z_e_d___h_e_i_g_h_t___p_r_o_f_i_l_e_._e_x_t]           [‐l
20_L_o_n_g_l_e_y_‐_R_i_c_e___p_r_o_f_i_l_e_._e_x_t] [‐o
21       _t_o_p_o_g_r_a_p_h_i_c___m_a_p___f_i_l_e_n_a_m_e_._p_p_m]                          [‐b
22_c_a_r_t_o_g_r_a_p_h_i_c___b_o_u_n_d_a_r_y___f_i_l_e_n_a_m_e_._d_a_t]
23       [‐s  _s_i_t_e_/_c_i_t_y___d_a_t_a_b_a_s_e_._d_a_t]  [‐d  _s_d_f___d_i_r_e_c_t_o_r_y___p_a_t_h] [‐m
24_e_a_r_t_h _r_a_d_i_u_s
25       _m_u_l_t_i_p_l_i_e_r _(_f_l_o_a_t_)] [‐f _f_r_e_q_u_e_n_c_y _(_M_H_z_) _f_o_r _F_r_e_s_n_e_l   _z_o_n_e
26_c_a_l_c_u_l_a_t_i_o_n_s
27       _(_f_l_o_a_t_)]   [‐R  _m_a_x_i_m_u_m _c_o_v_e_r_a_g_e _r_a_d_i_u_s _(_m_i_l_e_s_/_k_i_l_o_m_e_t_e_r_s_)
28_(_f_l_o_a_t_)] [‐dB
29       _t_h_r_e_s_h_o_l_d _b_e_y_o_n_d _w_h_i_c_h _c_o_n_t_o_u_r_s _w_i_l_l  _n_o_t  _b_e   _d_i_s_p_l_a_y_e_d]
30[‐gc  _g_r_o_u_n_d
31       _c_l_u_t_t_e_r   _h_e_i_g_h_t  _(_f_e_e_t_/_m_e_t_e_r_s_) _(_f_l_o_a_t_)] [‐fz _F_r_e_s_n_e_l _z_o_n_e
32_c_l_e_a_r_a_n_c_e _p_e_r_‐
33       _c_e_n_t_a_g_e _(_d_e_f_a_u_l_t _= _6_0_)] [‐ano  _a_l_p_h_a_n_u_m_e_r_i_c  _o_u_t_p_u_t   _f_i_l_e
34_n_a_m_e]  [‐ani
35       _a_l_p_h_a_n_u_m_e_r_i_c       _i_n_p_u_t       _f_i_l_e       _n_a_m_e]      [‐udt
36_u_s_e_r___d_e_f_i_n_e_d___t_e_r_r_a_i_n___f_i_l_e_._d_a_t] [‐n]
37       [‐N] [‐nf] [‐dbm] [‐ngs] [‐geo] [‐kml] [‐gpsav] [‐metric]
38
39DDEESSCCRRIIPPTTIIOONN
40       SSPPLLAATT!! is a powerful terrestrial RF propagation  and  ter‐
41rain  analysis
42       tool   for the spectrum between 20 MHz and 20 GHz.  SSPPLLAATT!!
43is free soft‐
44       ware, and is designed for operation on Unix   and   Linux‐
45based  worksta‐
46       tions.   Redistribution  and/or  modification is permitted
47under the terms
48       of the GNU General Public License, Version 2, as published
49by the  Free
50       Software  Foundation.   Adoption of SSPPLLAATT!!  source code in
51proprietary or
52       closed‐source applications is  a  violation  of  this  li‐
53cense  and  is
54       ssttrriiccttllyy forbidden.
55
56       SSPPLLAATT!!   is   distributed in the hope that it will be use‐
57ful, but WITHOUT
58       ANY WARRANTY, without even the implied warranty  of   MER‐
59CHANTABILITY  or
60       FITNESS   FOR   A PARTICULAR PURPOSE.  See the GNU General
61Public License
62       for more details.
63
64IINNTTRROODDUUCCTTIIOONN
65       Applications of SSPPLLAATT!! include the visualization,  design,
66and link bud‐
67       get  analysis  of wireless Wide Area Networks (WANs), com‐
68mercial and ama‐
69       teur radio communication systems above 20 MHz,   microwave
70links,  fre‐
71       quency   coordination  and  interference  studies, and the
72prediction of
73       analog and digital terrestrial radio and  television  con‐
74tour regions.
75
76       SSPPLLAATT!!  provides  RF  site  engineering data such as great
77circle distances
78       and  bearings between sites, antenna elevation angles (up‐
79tilt), depres‐
80       sion  angles  (downtilt),  antenna  height above mean  sea
81level,  antenna
82       height  above  average  terrain, bearings, distances,  and
83elevations to
84       known obstructions, Longley‐Rice path attenuation, and re‐
85ceived  signal
86       strength.   In addition, the minimum  antenna  height  re‐
87quirements needed
88       to  clear  terrain, the first Fresnel zone, and any  user‐
89definable  per‐
90       centage of the first Fresnel zone are also provided.
91
92       SSPPLLAATT!!  produces  reports, graphs, and high resolution to‐
93pographic maps
94       that depict line‐of‐sight paths, and  regional  path  loss
95and  signal
96       strength contours through which expected coverage areas of
97transmitters
98       and  repeater  systems can be obtained.   When  performing
99line‐of‐sight
100       and  Longley‐Rice  analyses in situations  where  multiple
101transmitter or
102       repeater sites are employed, SSPPLLAATT!! determines  individual
103and  mutual
104       areas of coverage within the network specified.
105
106IINNPPUUTT FFIILLEESS
107       SSPPLLAATT!!  is   a   command‐line   driven   application   and
108reads input data
109       through  a number of data files.  Some files are mandatory
110for  success‐
111       ful  execution  of  the  program, while others are option‐
112al.  Mandatory
113       files  include  digital elevation topography models in the
114form of  SPLAT
115       Data  Files  (SDF files), site location files (QTH files),
116and Longley‐
117       Rice  model  parameter files (LRP files).  Optional  files
118include  city
119       location  files,  cartographic  boundary  files,  user‐de‐
120fined  terrain
121       files, path loss input files,  antenna  radiation  pattern
122files,  and
123       color definition files.
124
125SSPPLLAATT DDAATTAA FFIILLEESS
126       SSPPLLAATT!! imports topographic data in the form of SPLAT  Data
127Files (SDFs).
128       These  files may be generated from a number of information
129sources.   In
130       the United States,  SPLAT  Data  Files  can  be  generated
131through U.S.  Geo‐
132       logical  Survey Digital Elevation Models (DEMs) using  the
133ppoossttddoowwnnllooaadd
134       and  uussggss22ssddff  utilities  included with SSPPLLAATT!!.  USGS Dig‐
135ital Elevation
136       Models  compatible  with  these  utilities  may  be  down‐
137loaded   from:
138       _h_t_t_p_:_/_/_e_d_c_f_t_p_._c_r_._u_s_g_s_._g_o_v_/_p_u_b_/_d_a_t_a_/_D_E_M_/_2_5_0_/.
139
140       Significantly  better  resolution  and accuracy can be ob‐
141tained through
142       the use of SRTM Version 2 digital  elevation  models,  es‐
143pecially  when
144       supplemented  by USGS‐derived SDF data.  These  one‐degree
145by one‐degree
146       models  are  the  product  of  the  Space  Shuttle  STS‐99
147Radar  Topography
148       Mission,  and  are  available  for most populated  regions
149of the Earth.
150       SPLAT Data Files may be generated from 3 arc‐second SRTM‐3
151data  using
152       the  included  ssrrttmm22ssddff utility.  SRTM‐3  Version  2  data
153may be obtained
154       through           anonymous            FTP           from:
155_f_t_p_:_/_/_e_0_s_r_p_0_1_u_._e_c_s_._n_a_s_a_._g_o_v_:_2_1_/_s_r_t_m_/_v_e_r_‐
156       _s_i_o_n_2_/_S_R_T_M_3_/
157
158       Note  that  SRTM  filenames  refer  to  the  latitude  and
159longitude of the
160       southwest  corner  of  the  topographic  dataset contained
161within the  file.
162       Therefore,  the region of interest must lie north and east
163of the lati‐
164       tude and longitude provided in the SRTM filename.
165
166       The  ssrrttmm22ssddff  utility  may  also be used to convert 3‐arc
167second SRTM data
168       in  Band  Interleaved  by Line (.BIL) format for use  with
169SSPPLLAATT!!.  This
170       data      is     available     via     the     web     at:
171_h_t_t_p_:_/_/_s_e_a_m_l_e_s_s_._u_s_g_s_._g_o_v_/_w_e_b_‐
172       _s_i_t_e_/_s_e_a_m_l_e_s_s_/
173
174       Band  Interleaved  by  Line  data must be downloaded in  a
175very specific
176       manner  to  be  compatible   with   ssrrttmm22ssddff  and  SSPPLLAATT!!.
177Please  consult
178       ssrrttmm22ssddff’s  documentation  for  instructions  on download‐
179ing .BIL topo‐
180       graphic data through the USGS’s Seamless Web Site.
181
182       Even  greater  resolution  and accuracy can be obtained by
183using  1  arc‐
184       second  SRTM‐1  Version  2 topography data.  This data  is
185available for
186       the United States and its territories and possessions, and
187may be down‐
188       loaded                                               from:
189_f_t_p_:_/_/_e_0_s_r_p_0_1_u_._e_c_s_._n_a_s_a_._g_o_v_:_2_1_/_s_r_t_m_/_v_e_r_s_i_o_n_2_/_S_R_T_M_1_/
190
191       High   resolution  SDF files for use with SSPPLLAATT!! HHDD may be
192generated from
193       data in this format using the ssrrttmm22ssddff‐‐hhdd utility.
194
195       Despite the higher accuracy that SRTM data has  to  offer,
196some voids  in
197       the  data  sets  exist.   When  voids  are  detected,  the
198ssrrttmm22ssddff and
199       ssrrttmm22ssddff‐‐hhdd utilities  replace  them  with   corresponding
200data  found  in
201       uussggss22ssddff   generated  SDF files.  If USGS‐derived SDF data
202is not avail‐
203       able, voids are handled through adjacent   pixel   averag‐
204ing,  or  direct
205       replacement.
206
207       SPLAT  Data Files contain integer value topographic eleva‐
208tions in meters
209       referenced to mean sea level for 1‐degree by 1‐degree  re‐
210gions  of  the
211       Earth.    SDF   files   can  be  read  by SSPPLLAATT!! in either
212standard format
213       (_._s_d_f) as generated directly by  the  uussggss22ssddff,  ssrrttmm22ssddff,
214and ssrrttmm22ssddff‐‐hhdd
215       utilities,   or  in  bzip2  compressed  format (_._s_d_f_._b_z_2).
216Since uncom‐
217       pressed files can be  read  slightly  faster  than   files
218that  have  been
219       compressed,  SSPPLLAATT!! searches for needed SDF data in uncom‐
220pressed format
221       first.  If uncompressed data cannot  be  located,   SSPPLLAATT!!
222then  searches
223       for data in bzip2 compressed format.  If no compressed SDF
224files can be
225       found for the region requested,  SSPPLLAATT!!  assumes  the  re‐
226gion  is  over
227       water,  and will assign an elevation of sea‐level to these
228areas.
229
230       This  feature  of SSPPLLAATT!! makes it possible to perform path
231analysis not
232       only  over land, but also between coastal areas not repre‐
233sented by Digi‐
234       tal  Elevation  Model  data.   However, this  behavior  of
235SSPPLLAATT!!  under‐
236       scores  the  importance of having all the  SDF  files  re‐
237quired  for  the
238       region being analyzed if meaningful results are to be  ex‐
239pected.
240
241SSIITTEE LLOOCCAATTIIOONN ((QQTTHH)) FFIILLEESS
242       SSPPLLAATT!!  imports  site  location information of transmitter
243and receiver
244       sites analyzed by the program from ASCII  files  having  a
245_._q_t_h extension.
246       QTH  files  contain  the  site’s name, the site’s latitude
247(positive if
248       North of the equator, negative if   South),   the   site’s
249longitude  (in
250       degrees  West, 0 to 360 degrees, or degrees East 0 to ‐360
251degrees), and
252       the site’s antenna height above ground level  (AGL),  each
253separated by a
254       single line‐feed character.  The antenna height is assumed
255to be speci‐
256       fied in feet unless followed by  the  letter  _m   or   the
257word  _m_e_t_e_r_s  in
258       either   upper  or lower case.  Latitude and longitude in‐
259formation may be
260       expressed in either decimal format  (74.6864)  or  degree,
261minute,  second
262       (DMS) format (74 41 11.0).
263
264       For   example,  a site location file describing television
265station WNJT‐
266       DT, Trenton, NJ (_w_n_j_t_‐_d_t_._q_t_h) might read as follows:
267
268               WNJT‐DT
269               40.2828
270               74.6864
271               990.00
272
273       Each transmitter and  receiver  site  analyzed  by  SSPPLLAATT!!
274must  be  repre‐
275       sented by its own site location (QTH) file.
276
277LLOONNGGLLEEYY‐‐RRIICCEE PPAARRAAMMEETTEERR ((LLRRPP)) FFIILLEESS
278       Longley‐Rice  parameter data files are required for SSPPLLAATT!!
279to determine
280       RF path loss, field strength,  or  received  signal  power
281level in  either
282       point‐to‐point   or   area  prediction mode.  Longley‐Rice
283model parameter
284       data is read from files having the same base name  as  the
285transmitter
286       site   QTH   file,  but with a _._l_r_p extension.  SSPPLLAATT!! LRP
287files share the
288       following format (_w_n_j_t_‐_d_t_._l_r_p):
289
290               15.000  ; Earth Dielectric Constant (Relative per‐
291mittivity)
292               0.005   ; Earth Conductivity (Siemens per meter)
293               301.000 ; Atmospheric Bending Constant (N‐units)
294               647.000 ; Frequency in MHz (20 MHz to 20 GHz)
295               5        ;  Radio Climate (5 = Continental Temper‐
296ate)
297               0       ; Polarization (0 = Horizontal, 1 = Verti‐
298cal)
299               0.50     ;  Fraction  of  situations (50% of loca‐
300tions)
301               0.90    ; Fraction of time (90% of the time)
302               46000.0 ; ERP in Watts (optional)
303
304       If an LRP file corresponding to the tx_site QTH file  can‐
305not  be  found,
306       SSPPLLAATT!!  scans  the  current working directory for the file
307"splat.lrp".
308       If this file cannot be found, then default parameters will
309be  assigned
310       by  SSPPLLAATT!! and a corresponding "splat.lrp" file containing
311these default
312       parameters will be written to the current working directo‐
313ry.  The  gen‐
314       erated  "splat.lrp" file can then be edited by the user as
315needed.
316
317       Typical  Earth dielectric constants and conductivity  val‐
318ues are as fol‐
319       lows:
320                                  Dielectric Constant  Conductiv‐
321ity
322               Salt water       :        80                5.000
323               Good ground      :        25                0.020
324               Fresh water      :        80                0.010
325               Marshy land      :        12                0.007
326               Farmland, forest :        15                0.005
327               Average ground   :        15                0.005
328               Mountain, sand   :        13                0.002
329               City             :         5                0.001
330               Poor ground      :         4                0.001
331
332       Radio climate codes used by SSPPLLAATT!! are as follows:
333
334               1: Equatorial (Congo)
335               2: Continental Subtropical (Sudan)
336               3: Maritime Subtropical (West coast of Africa)
337               4: Desert (Sahara)
338               5: Continental Temperate
339               6: Maritime Temperate,  over  land  (UK  and  west
340coasts  of  US  &
341       EU)
342               7: Maritime Temperate, over sea
343
344       The  Continental Temperate climate is common to large land
345masses in the
346       temperate zone, such as  the  United  States.   For  paths
347shorter than  100
348       km,  there  is  little  difference between Continental and
349Maritime Temper‐
350       ate climates.
351
352       The seventh and eighth parameters in the _._l_r_p file  corre‐
353spond  to  the
354       statistical  analysis  provided by the Longley‐Rice model.
355In this exam‐
356       ple, SSPPLLAATT!! will return the maximum  path  loss  occurring
35750% of the time
358       (fraction of time) in 90% of situations (fraction of situ‐
359ations).  This
360       is often denoted as F(50,90) in Longley‐Rice studies.   In
361the  United
362       States,  an  F(50,90) criteria is typically used for digi‐
363tal television
364       (8‐level VSB modulation), while  F(50,50)  is   used   for
365analog  (VSB‐
366       AM+NTSC) broadcasts.
367
368       For    further   information  on  these  parameters,  see:
369_h_t_t_p_:_/_/_f_l_a_t_‐
370       _t_o_p_._i_t_s_._b_l_d_r_d_o_c_._g_o_v_/_i_t_m_._h_t_m_l                           and
371_h_t_t_p_:_/_/_w_w_w_._s_o_f_t_w_r_i_g_h_t_._c_o_m_/_f_a_q_/_e_n_g_i_‐
372       _n_e_e_r_i_n_g_/_p_r_o_p___l_o_n_g_l_e_y___r_i_c_e_._h_t_m_l
373
374       The   final  parameter in the _._l_r_p file corresponds to the
375transmitter’s
376       effective radiated power, and is optional.  If it is   in‐
377cluded  in  the
378       _._l_r_p  file,  then  SSPPLLAATT!!  will  compute  received  signal
379strength levels and
380       field strength level contours when performing Longley‐Rice
381studies.  If
382       the   parameter is omitted, path loss is computed instead.
383The ERP pro‐
384       vided  in  the  _._l_r_p  file  can  be  overridden  by  using
385SSPPLLAATT!!’s  _‐_e_r_p  com‐
386       mand‐line   switch.   If the _._l_r_p file contains an ERP pa‐
387rameter and the
388       generation of path loss rather than  field  strength  con‐
389tours is desired,
390       the  ERP  can  be  assigned  to zero using the _‐_e_r_p switch
391without having to
392       edit the _._l_r_p file to accomplish the same result.
393
394CCIITTYY LLOOCCAATTIIOONN FFIILLEESS
395       The names and locations of cities, tower  sites,  or  oth‐
396er  points  of
397       interest  may  be imported and plotted on topographic maps
398generated by
399       SSPPLLAATT!!.  SSPPLLAATT!! imports the names of cities and  locations
400from  ASCII
401       files   containing  the location of interest’s name, lati‐
402tude, and longi‐
403       tude.  Each field is separated by a comma.  Each record is
404separated by
405       a   single   line   feed  character.  As was the case with
406the _._q_t_h files,
407       latitude and longitude information may be entered  in  ei‐
408ther decimal  or
409       degree, minute, second (DMS) format.
410
411       For example (_c_i_t_i_e_s_._d_a_t):
412
413               Teaneck, 40.891973, 74.014506
414               Tenafly, 40.919212, 73.955892
415               Teterboro, 40.859511, 74.058908
416               Tinton Falls, 40.279966, 74.093924
417               Toms River, 39.977777, 74.183580
418               Totowa, 40.906160, 74.223310
419               Trenton, 40.219922, 74.754665
420
421       A  total  of five separate city data files may be imported
422at a time, and
423       there is no limit to the  size  of  these  files.   SSPPLLAATT!!
424reads  city  data
425       on   a   "first   come/first served" basis, and plots only
426those locations
427       whose annotations do not  conflict  with  annotations   of
428locations  read
429       earlier  in  the  current  city  data file, or in previous
430files.  This
431       behavior minimizes clutter in SSPPLLAATT!! generated  topograph‐
432ic  maps,  but
433       also   mandates  that important locations be placed toward
434the beginning
435       of the first city data file, and locations less  important
436be positioned
437       further down the list or in subsequent data files.
438
439       City  data  files  may  be  generated  manually  using any
440text editor,
441       imported from other sources, or derived from data   avail‐
442able  from  the
443       U.S.  Census Bureau using the cciittyyddeeccooddeerr utility included
444with SSPPLLAATT!!.
445       Such  data  is  available  free   of   charge   via    the
446Internet   at:
447       _h_t_t_p_:_/_/_w_w_w_._c_e_n_s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_b_d_y___f_i_l_e_s_._h_t_m_l,      and
448must be in ASCII
449       format.
450
451CCAARRTTOOGGRRAAPPHHIICC BBOOUUNNDDAARRYY DDAATTAA FFIILLEESS
452       Cartographic boundary data may also be  imported  to  plot
453the  boundaries
454       of  cities, counties, or states on topographic maps gener‐
455ated by SSPPLLAATT!!.
456       Such data must be of the  form  of   ARC/INFO   Ungenerate
457(ASCII  Format)
458       Metadata   Cartographic  Boundary Files, and are available
459from the U.S.
460       Census     Bureau     via     the       Internet       at:
461_h_t_t_p_:_/_/_w_w_w_._c_e_n_‐
462       _s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_c_o_2_0_0_0_._h_t_m_l_#_a_s_c_i_i                  and
463_h_t_t_p_:_/_/_w_w_w_._c_e_n_‐
464       _s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_p_l_2_0_0_0_._h_t_m_l_#_a_s_c_i_i.  A  total  of  five
465separate carto‐
466       graphic   boundary files may be imported at a time.  It is
467not necessary
468       to import state boundaries  if  county   boundaries   have
469already  been
470       imported.
471
472PPRROOGGRRAAMM OOPPEERRAATTIIOONN
473       SSPPLLAATT!!  is  invoked via the command‐line using a series of
474switches and
475       arguments.  Since SSPPLLAATT!! is a CPU  and  memory   intensive
476application,
477       this   type   of  interface  minimizes  overhead and lends
478itself well to
479       scripted (batch)  operations.   SSPPLLAATT!!’s  CPU  and  memory
480scheduling prior‐
481       ity  may be modified through the use of the Unix nniiccee com‐
482mand.
483
484       The  number and type of switches passed to  SSPPLLAATT!!  deter‐
485mine its mode of
486       operation  and  method  of output data generation.  Nearly
487all of SSPPLLAATT!!’s
488       switches may be cascaded in any order on the command  line
489when invoking
490       the program.
491
492       Simply typing splat on the  command  line  will  return  a
493summary  of
494       SSPPLLAATT!!’s command line options:
495
496                    ‐‐==[  SPLAT!  v1.3.0  Available   Options...
497]==‐‐
498
499            ‐t  txsite(s).qth  (max  of 4 with ‐c, max of 30 with
500‐L)
501            ‐r rxsite.qth
502            ‐c plot coverage of TX(s) with an  RX  antenna  at  X
503feet/meters AGL
504            ‐L  plot  path  loss  map  of  TX based on an RX at X
505feet/meters AGL
506            ‐s filename(s) of city/site file(s) to import (5 max)
507            ‐b filename(s) of cartographic  boundary  file(s)  to
508import (5 max)
509            ‐p filename of terrain profile graph to plot
510            ‐e filename of terrain elevation graph to plot
511            ‐h filename of terrain height graph to plot
512            ‐H  filename  of  normalized  terrain height graph to
513plot
514            ‐l filename of path loss graph to plot
515            ‐o filename of topographic map to generate (.ppm)
516            ‐u filename of user‐defined terrain file to import
517            ‐d  sdf  file  directory  path  (overrides  path   in
518~/.splat_path file)
519            ‐m earth radius multiplier
520            ‐n do not plot LOS paths in .ppm maps
521            ‐N do not produce unnecessary site or obstruction re‐
522ports
523            ‐f frequency for Fresnel zone calculation (MHz)
524            ‐R modify default range for ‐c or  ‐L  (miles/kilome‐
525ters)
526           ‐db  threshold  beyond which contours will not be dis‐
527played
528           ‐nf do not plot Fresnel zones in height plots
529           ‐fz Fresnel zone clearance percentage (default = 60)
530           ‐gc ground clutter height (feet/meters)
531          ‐ngs display greyscale  topography  as  white  in  .ppm
532files
533          ‐erp override ERP in .lrp file (Watts)
534          ‐ano name of alphanumeric output file
535          ‐ani name of alphanumeric input file
536          ‐udt filename of user defined terrain input file
537          ‐kml generate Google Earth (.kml) compatible output
538          ‐geo  generate  an  Xastir .geo georeference file (with
539.ppm output)
540          ‐dbm plot signal power level contours rather than field
541strength
542        ‐gpsav  preserve  gnuplot  temporary  working files after
543SPLAT! execution
544       ‐metric employ metric rather than imperial units  for  all
545user I/O
546
547       The  command‐line options for splat and splat‐hd are iden‐
548tical.
549
550       SSPPLLAATT!! operates  in  two  distinct  modes:  _p_o_i_n_t_‐_t_o_‐_p_o_i_n_t
551_m_o_d_e,  and  _a_r_e_a
552       _p_r_e_d_i_c_t_i_o_n   _m_o_d_e.   Either a line‐of‐sight (LOS) or Long‐
553ley‐Rice Irregu‐
554       lar Terrain (ITM) propagation model may be invoked by  the
555user.   True
556       Earth,  four‐thirds Earth, or any other user‐defined Earth
557radius may be
558       specified when performing line‐of‐sight analysis.
559
560PPOOIINNTT‐‐TTOO‐‐PPOOIINNTT AANNAALLYYSSIISS
561       SSPPLLAATT!! may  be  used  to  perform  line‐of‐sight   terrain
562analysis  between
563       two specified site locations.  For example:
564
565       splat ‐t tx_site.qth ‐r rx_site.qth
566
567       invokes  a  line‐of‐sight  terrain  analysis  between  the
568transmitter speci‐
569       fied in _t_x___s_i_t_e_._q_t_h and receiver specified in  _r_x___s_i_t_e_._q_t_h
570using a  True
571       Earth   radius  model,  and  writes a SSPPLLAATT!! Path Analysis
572Report to the
573       current working directory.  The report contains details of
574the  trans‐
575       mitter  and receiver sites, and identifies the location of
576any obstruc‐
577       tions detected along the line‐of‐sight path.   If  an  ob‐
578struction can  be
579       cleared  by  raising  the receive antenna to a greater al‐
580titude, SSPPLLAATT!!
581       will indicate the minimum antenna height required  for   a
582line‐of‐sight
583       path  to  exist between the transmitter and receiver loca‐
584tions specified.
585       Note that imperial units (miles, feet) are  specified  un‐
586less the _‐_m_e_t_r_i_c
587       switch is added to SSPPLLAATT!!’s command line options:
588
589       splat ‐t tx_site.qth ‐r rx_site.qth ‐metric
590
591       If   the antenna must be raised a significant amount, this
592determination
593       may take a few moments.  Note that  the  results  provided
594are the _m_i_n_i_m_u_m
595       necessary  for  a  line‐of‐sight path to exist, and in the
596case of this
597       simple example, do not take Fresnel zone   clearance   re‐
598quirements  into
599       consideration.
600
601       _q_t_h  extensions  are  assumed by SSPPLLAATT!! for QTH files, and
602are optional
603       when specifying ‐t and ‐r arguments on  the  command‐line.
604SSPPLLAATT!!  auto‐
605       matically   reads   all SPLAT Data Files necessary to con‐
606duct the terrain
607       analysis   between   the    sites    specified.     SSPPLLAATT!!
608searches  for  the
609       required   SDF   files  in  the  current working directory
610first.  If the
611       needed files are not found, SSPPLLAATT!! then  searches  in  the
612path  specified
613       by the _‐_d command‐line switch:
614
615       splat ‐t tx_site ‐r rx_site ‐d /cdrom/sdf/
616
617       An   external directory path may be specified by placing a
618".splat_path"
619       file under the user’s home directory.  This file must con‐
620tain the  full
621       directory   path   of   last  resort to all the SDF files.
622The path in the
623       _$_H_O_M_E_/_._s_p_l_a_t___p_a_t_h file must be of the  form  of  a  single
624line  of  ASCII
625       text:
626
627       /opt/splat/sdf/
628
629       and can be generated using any text editor.
630
631       A   graph   of   the  terrain profile between the receiver
632and transmitter
633       locations as a function of distance from the receiver  can
634be  generated
635       by adding the _‐_p switch:
636
637       splat ‐t tx_site ‐r rx_site ‐p terrain_profile.png
638
639       SSPPLLAATT!!  invokes ggnnuupplloott when generating graphs.  The file‐
640name extension
641       specified to SSPPLLAATT!! determines the  format  of  the  graph
642produced.   _._p_n_g
643       will  produce  a 640x480 color PNG graphic file, while _._p_s
644or _._p_o_s_t_s_c_r_i_p_t
645       will produce postscript output.  Output in formats such as
646GIF,  Adobe
647       Illustrator,  AutoCAD  dxf,  LaTeX,  and  many  others are
648available.  Please
649       consult ggnnuupplloott, and ggnnuupplloott’s documentation for   details
650on  all  the
651       supported output formats.
652
653       A graph of elevations subtended by the terrain between the
654receiver and
655       transmitter as a function of distance  from  the  receiver
656can  be  gener‐
657       ated by using the _‐_e switch:
658
659       splat ‐t tx_site ‐r rx_site ‐e elevation_profile.png
660
661       The   graph  produced  using  this  switch illustrates the
662elevation and
663       depression angles resulting  from  the   terrain   between
664the  receiver’s
665       location    and   the   transmitter  site  from  the  per‐
666spective  of  the
667       receiver’s location.  A second trace  is  plotted  between
668the  left  side
669       of the graph (receiver’s location) and the location of the
670transmitting
671       antenna on the right.   This  trace  illustrates  the  el‐
672evation  angle
673       required  for  a  line‐of‐sight  path to exist between the
674receiver and
675       transmitter locations.  If the trace intersects the   ele‐
676vation  profile
677       at   any   point  on the graph, then this is an indication
678that a line‐of‐
679       sight path does not exist under the conditions given,  and
680the  obstruc‐
681       tions   can  be  clearly  identified  on  the graph at the
682point(s) of inter‐
683       section.
684
685       A graph illustrating terrain height referenced to a  line‐
686of‐sight  path
687       between  the  transmitter  and  receiver  may be generated
688using the _‐_h
689       switch:
690
691       splat ‐t tx_site ‐r rx_site ‐h height_profile.png
692
693       A terrain height  plot  normalized  to   the   transmitter
694and  receiver
695       antenna heights can be obtained using the _‐_H switch:
696
697       splat  ‐t  tx_site  ‐r  rx_site  ‐H normalized_height_pro‐
698file.png
699
700       A contour of the Earth’s curvature is also plotted in this
701mode.
702
703       The  first Fresnel Zone, and 60% of the first Fresnel Zone
704can be added
705       to height profile graphs by  adding  the  _‐_f  switch,  and
706specifying a fre‐
707       quency  (in  MHz) at which the Fresnel Zone should be mod‐
708eled:
709
710       splat  ‐t  tx_site  ‐r  rx_site  ‐f  439.250  ‐H   normal‐
711ized_height_profile.png
712
713       Fresnel  Zone  clearances other 60% can be specified using
714the _‐_f_z switch
715       as follows:
716
717       splat  ‐t  tx_site  ‐r  rx_site  ‐f  439.250  ‐fz  75   ‐H
718height_profile2.png
719
720       A  graph  showing  Longley‐Rice  path  loss may be plotted
721using the _‐_l
722       switch:
723
724       splat ‐t tx_site ‐r rx_site ‐l path_loss_profile.png
725
726       As before, adding the _‐_m_e_t_r_i_c switch forces the graphs  to
727be  plotted
728       using   metric   units  of measure.  The _‐_g_p_s_a_v switch in‐
729structs SSPPLLAATT!! to
730       preserve (rather than delete) the  ggnnuupplloott  working  files
731generated  dur‐
732       ing   SSPPLLAATT!!  execution,  allowing  the user to edit these
733files and re‐run
734       ggnnuupplloott if desired.
735
736       When performing a  point‐to‐point   analysis,   a   SSPPLLAATT!!
737Path  Analysis
738       Report   is  generated  in  the form of a text file with a
739_._t_x_t filename
740       extension.  The report contains  bearings  and   distances
741between  the
742       transmitter  and  receiver,  as well as the free‐space and
743Longley‐Rice
744       path loss for the path being analyzed.  The mode of propa‐
745gation for the
746       path   is   given   as   _L_i_n_e_‐_o_f_‐_S_i_g_h_t,   _S_i_n_g_l_e  _H_o_r_i_z_o_n,
747_D_o_u_b_l_e  _H_o_r_i_z_o_n,
748       _D_i_f_f_r_a_c_t_i_o_n _D_o_m_i_n_a_n_t, or _T_r_o_p_o_s_c_a_t_t_e_r _D_o_m_i_n_a_n_t.
749
750       Distances and locations to known obstructions  along   the
751path  between
752       transmitter   and  receiver  are  also  provided.   If the
753transmitter’s
754       effective radiated power is specified in the transmitter’s
755correspond‐
756       ing   _._l_r_p   file,  then predicted signal strength and an‐
757tenna voltage at
758       the receiving location is also provided in the Path Analy‐
759sis Report.
760
761       To  determine  the  signal‐to‐noise  (SNR) ratio at remote
762location  where
763       random Johnson (thermal) noise  is  the  primary  limiting
764factor in recep‐
765       tion:
766
767       _S_N_R=_T‐_N_J‐_L+_G‐_N_F
768
769       where  TT  is the ERP of the transmitter in dBW in the  di‐
770rection  of  the
771       receiver,  NNJJ  is Johnson Noise in dBW (‐136 dBW for  a  6
772MHz television
773       channel), LL is the path loss provided by SSPPLLAATT!!  in dB (as
774a  _p_o_s_i_t_i_v_e
775       number),  GG is the receive antenna gain in  dB  over  iso‐
776tropic, and NNFF is
777       the receiver noise figure in dB.
778
779       TT may be computed as follows:
780
781       _T=_T_I+_G_T
782
783       where  TTII is actual amount of RF power  delivered  to  the
784transmitting
785       antenna in dBW, GGTT is the transmitting antenna gain  (over
786isotropic) in
787       the  direction  of the receiver (or the horizon if the re‐
788ceiver  is  over
789       the horizon).
790
791       To compute how much more signal is available over the min‐
792imum to neces‐
793       sary to achieve a specific signal‐to‐noise ratio:
794
795       _S_i_g_n_a_l__M_a_r_g_i_n=_S_N_R‐_S
796
797       where  SS  is  the minimum required SNR ratio (15.5 dB  for
798ATSC  (8‐level
799       VSB) DTV, 42 dB for analog NTSC television).
800
801       A  topographic  map  may  be  generated by SSPPLLAATT!! to visu‐
802alize the path
803       between  the transmitter and receiver sites from  yet  an‐
804other  perspec‐
805       tive.   Topographic maps generated by SSPPLLAATT!! display  ele‐
806vations using a
807       logarithmic   grayscale,  with  higher  elevations  repre‐
808sented  through
809       brighter  shades  of  gray.   The  dynamic  range  of  the
810image is scaled
811       between  the  highest and lowest elevations present in the
812map.  The only
813       exception  to  this  is sea‐level,  which  is  represented
814using the color
815       blue.
816
817       Topographic output is invoked using the _‐_o switch:
818
819       splat ‐t tx_site ‐r rx_site ‐o topo_map.ppm
820
821       The  _._p_p_m  extension  on the output filename is assumed by
822SSPPLLAATT!!, and  is
823       optional.
824
825       In  this  example,  _t_o_p_o___m_a_p_._p_p_m  will  illustrate the lo‐
826cations of the
827       transmitter  and  receiver  sites specified.  In addition,
828the great  cir‐
829       cle  path  between the two sites will be drawn over  loca‐
830tions for which
831       an  unobstructed  path exists to the transmitter at a  re‐
832ceiving  antenna
833       height equal to that of the receiver  site  (specified  in
834_r_x___s_i_t_e_._q_t_h).
835
836       It   may   desirable  to populate the topographic map with
837names and loca‐
838       tions of cities, tower sites, or other   important   loca‐
839tions.   A  city
840       file may be passed to SSPPLLAATT!! using the _‐_s switch:
841
842       splat ‐t tx_site ‐r rx_site ‐s cities.dat ‐o topo_map
843
844       Up   to   five separate city files may be passed to SSPPLLAATT!!
845at a time fol‐
846       lowing the _‐_s switch.
847
848       County and state boundaries may be added  to  the  map  by
849specifying up to
850       five   U.S.  Census  Bureau  cartographic  boundary  files
851using the _‐_b
852       switch:
853
854       splat ‐t tx_site ‐r rx_site ‐b co34_d00.dat ‐o topo_map
855
856       In situations where multiple transmitter sites are in use,
857as  many  as
858       four  site locations may be passed to SSPPLLAATT!! at a time for
859analysis:
860
861       splat ‐t tx_site1 tx_site2 tx_site3 tx_site4 ‐r rx_site ‐p
862profile.png
863
864       In  this  example,  four separate terrain profiles and ob‐
865struction reports
866       will be generated by SSPPLLAATT!!.  A single topographic map can
867be specified
868       using   the   _‐_o  switch,  and line‐of‐sight paths between
869each transmitter
870       and the receiver site indicated will be  produced  on  the
871map,  each  in
872       its  own  color.   The  path between the first transmitter
873specified to the
874       receiver will be in green, the  path  between  the  second
875transmitter  and
876       the   receiver   will   be  in  cyan, the path between the
877third transmitter
878       and the receiver will be in violet, and the  path  between
879the  fourth
880       transmitter and the receiver will be in sienna.
881
882       SSPPLLAATT!!   generated  topographic  maps are 24‐bit TrueColor
883Portable PixMap
884       (PPM) images.  They may  be  viewed,   edited,   or   con‐
885verted  to  other
886       graphic   formats   by  popular image viewing applications
887such as xxvv, TThhee
888       GGIIMMPP, IImmaaggeeMMaaggiicckk, and  XXPPaaiinntt.   PNG  format  is   highly
889recommended  for
890       lossless  compressed  storage  of  SSPPLLAATT!!  generated topo‐
891graphic output
892       files.  IImmaaggeeMMaaggiicckk’s command‐line utility easily converts
893SSPPLLAATT!!’s PPM
894       files to PNG format:
895
896       convert splat_map.ppm splat_map.png
897
898       Another   excellent  PPM  to  PNG  command‐line utility is
899available at:
900       _h_t_t_p_:_/_/_w_w_w_._l_i_b_p_n_g_._o_r_g_/_p_u_b_/_p_n_g_/_b_o_o_k_/_s_o_u_r_c_e_s_._h_t_m_l.    As   a
901last resort, PPM
902       files   may   be  compressed  using the bzip2 utility, and
903read directly by
904       TThhee GGIIMMPP in this format.
905
906       The _‐_n_g_s option assigns all terrain to  the  color  white,
907and can be used
908       when  it  is desirable to generate a map that is devoid of
909terrain:
910
911       splat ‐t  tx_site  ‐r  rx_site  ‐b  co34_d00.dat  ‐ngs  ‐o
912white_map
913
914       The   resulting  .ppm  image file can be converted to .png
915format with a
916       transparent background using IImmaaggeeMMaaggiicckk’s ccoonnvveerrtt  utili‐
917ty:
918
919       convert  ‐transparent  "#FFFFFF"  white_map.ppm  transpar‐
920ent_map.png
921
922RREEGGIIOONNAALL CCOOVVEERRAAGGEE AANNAALLYYSSIISS
923       SSPPLLAATT!! can analyze a transmitter or repeater site, or net‐
924work of sites,
925       and  predict  the  regional  coverage for each site speci‐
926fied.  In this
927       mode, SSPPLLAATT!! can generate a  topographic  map   displaying
928the  geometric
929       line‐of‐sight  coverage area of the sites based on the lo‐
930cation of each
931       site and the height of receive antenna wishing to communi‐
932cate with  the
933       site in question.  A regional analysis may be performed by
934SSPPLLAATT!! using
935       the _‐_c switch as follows:
936
937       splat ‐t tx_site ‐c 30.0 ‐s cities.dat ‐b co34_d00.dat  ‐o
938tx_coverage
939
940       In  this  example,  SSPPLLAATT!!  generates  a  topographic  map
941called  _t_x___c_o_v_e_r_‐
942       _a_g_e_._p_p_m  that illustrates the predicted line‐of‐sight  re‐
943gional coverage
944       of _t_x___s_i_t_e to receiving  locations  having  antennas  30.0
945feet  above
946       ground  level  (AGL).  If the _‐_m_e_t_r_i_c switch is used,  the
947argument fol‐
948       lowing  the  _‐_c  switch  is interpreted as being in meters
949rather  than  in
950       feet.   The  contents  of _c_i_t_i_e_s_._d_a_t are  plotted  on  the
951map, as are the
952       cartographic    boundaries    contained    in   the   file
953_c_o_3_4___d_0_0_._d_a_t.
954
955       When plotting line‐of‐sight  paths  and   areas   of   re‐
956gional  coverage,
957       SSPPLLAATT!!  by default does not account for the effects of at‐
958mospheric bend‐
959       ing.  However, this behavior may be modified by using  the
960Earth  radius
961       multiplier (_‐_m) switch:
962
963       splat   ‐t   wnjt‐dt   ‐c  30.0  ‐m 1.333 ‐s cities.dat ‐b
964counties.dat ‐o
965       map.ppm
966
967       An earth radius multiplier of 1.333  instructs  SSPPLLAATT!!  to
968use the  "four‐
969       thirds  earth"  model for line‐of‐sight propagation analy‐
970sis.  Any appro‐
971       priate earth radius multiplier may be selected by the  us‐
972er.
973
974       When  performing  a  regional analysis, SSPPLLAATT!! generates a
975site report for
976       each  station  analyzed.   SSPPLLAATT!!  site   reports  contain
977details of the
978       site’s geographic location,  its  height  above  mean  sea
979level,  the
980       antenna’s height  above  mean  sea  level,  the  antenna’s
981height above aver‐
982       age  terrain, and the height of the average  terrain  cal‐
983culated  toward
984       the bearings of 0, 45, 90, 135, 180, 225, 270, and 315 de‐
985grees azimuth.
986
987DDEETTEERRMMIINNIINNGG MMUULLTTIIPPLLEE RREEGGIIOONNSS OOFF LLOOSS CCOOVVEERRAAGGEE
988       SSPPLLAATT!!  can also display line‐of‐sight coverage areas  for
989as  many  as
990       four separate transmitter sites on  a  common  topographic
991map.  For exam‐
992       ple:
993
994       splat  ‐t  site1 site2 site3 site4 ‐c 10.0 ‐metric ‐o net‐
995work.ppm
996
997       plots the regional line‐of‐sight coverage of site1, site2,
998site3,  and
999       site4  based  on  a  receive  antenna  located 10.0 meters
1000above ground
1001       level.  A topographic map is  then  written  to  the  file
1002_n_e_t_w_o_r_k_._p_p_m.  The
1003       line‐of‐sight  coverage area of the transmitters are plot‐
1004ted as follows
1005       in the colors indicated (along  with  their  corresponding
1006RGB  values  in
1007       decimal):
1008
1009           site1: Green (0,255,0)
1010           site2: Cyan (0,255,255)
1011           site3: Medium Violet (147,112,219)
1012           site4: Sienna 1 (255,130,71)
1013
1014           site1 + site2: Yellow (255,255,0)
1015           site1 + site3: Pink (255,192,203)
1016           site1 + site4: Green Yellow (173,255,47)
1017           site2 + site3: Orange (255,165,0)
1018           site2 + site4: Dark Sea Green 1 (193,255,193)
1019           site3 + site4: Dark Turquoise (0,206,209)
1020
1021           site1 + site2 + site3: Dark Green (0,100,0)
1022           site1 + site2 + site4: Blanched Almond (255,235,205)
1023           site1 + site3 + site4: Medium Spring Green (0,250,154)
1024           site2 + site3 + site4: Tan (210,180,140)
1025
1026           site1 + site2 + site3 + site4: Gold2 (238,201,0)
1027
1028       If   separate  _._q_t_h files are generated, each representing
1029a common site
1030       location but a different  antenna  height,  a  single  to‐
1031pographic  map
1032       illustrating   the  regional coverage from as many as four
1033separate loca‐
1034       tions on a single tower may be generated by SSPPLLAATT!!.
1035
1036PPAATTHH LLOOSSSS AANNAALLYYSSIISS
1037       If the _‐_c switch is replaced by a _‐_L  switch,  a  Longley‐
1038Rice  path  loss
1039       map for a transmitter site may be generated:
1040
1041       splat  ‐t  wnjt  ‐L  30.0 ‐s cities.dat ‐b co34_d00.dat ‐o
1042path_loss_map
1043
1044       In  this mode, SSPPLLAATT!! generates a multi‐color  map  illus‐
1045trating expected
1046       signal  levels  in areas surrounding the transmitter site.
1047A  legend  at
1048       the  bottom  of the map correlates each color with a  spe‐
1049cific path loss
1050       range in decibels.
1051
1052       The  _‐_d_b  switch allows a threshold to be set beyond which
1053contours  will
1054       not  be plotted on the map.  For example, if a  path  loss
1055beyond ‐140 dB
1056       is  irrelevant  to  the  survey  being conducted, SSPPLLAATT!!’s
1057path  loss  plot
1058       can be constrained to the region bounded by the 140 dB at‐
1059tenuation con‐
1060       tour as follows:
1061
1062       splat  ‐t wnjt‐dt ‐L 30.0 ‐s  cities.dat  ‐b  co34_d00.dat
1063‐db  140  ‐o
1064       plot.ppm
1065
1066       The  path  loss contour threshold may be expressed as  ei‐
1067ther a positive
1068       or negative quantity.
1069
1070       The  path loss analysis range may be modified to  a  user‐
1071specific  dis‐
1072       tance  using  the  _‐_R  switch.  The argument must be given
1073in miles (or
1074       kilometers  if  the  _‐_m_e_t_r_i_c  switch is used).  If a range
1075wider  than  the
1076       generated  topographic  map   is  specified,  SSPPLLAATT!!  will
1077perform Longley‐
1078       Rice  path  loss  calculations between all four corners of
1079the  area  pre‐
1080       diction map.
1081
1082       The  colors used to illustrate contour regions  in  SSPPLLAATT!!
1083generated cov‐
1084       erage  maps  may be  tailored  by  the  user  by  creating
1085or  modifying
1086       SSPPLLAATT!!’s  color  definition  files.  SSPPLLAATT!! color  defini‐
1087tion files have
1088       the  same base name as the transmitter’s  _._q_t_h  file,  but
1089carry  _._l_c_f,
1090       _._s_c_f, and _._d_c_f extensions.  If the necessary file does not
1091exist in the
1092       current  working  when  SSPPLLAATT!!  is run, a file  containing
1093default  color
1094       definition  parameters  that is suitable for manual  edit‐
1095ing by the user
1096       is written into the current directory.
1097
1098       When  a  regional  Longley‐Rice analysis is performed  and
1099the  transmit‐
1100       ter’s  ERP  is not specified or is zero, a _._l_c_f path  loss
1101color defini‐
1102       tion  file corresponding to the  transmitter  site  (_._q_t_h)
1103is  read  by
1104       SSPPLLAATT!!  from the current working  directory.   If  a  _._l_c_f
1105file correspond‐
1106       ing  to  the transmitter site is not found, then a default
1107file  suitable
1108       for manual editing by the user is automatically  generated
1109by SSPPLLAATT!!.
1110
1111       A   path   loss  color  definition file possesses the fol‐
1112lowing structure
1113       (_w_n_j_t_‐_d_t_._l_c_f):
1114
1115        ; SPLAT!  Auto‐generated   Path‐Loss   Color   Definition
1116("wnjt‐dt.lcf")
1117       File
1118        ;
1119        ;  Format for the parameters held in this file is as fol‐
1120lows:
1121        ;
1122        ;    dB: red, green, blue
1123        ;
1124        ; ...where "dB" is the path loss (in dB) and
1125        ; "red", "green", and "blue" are  the  corresponding  RGB
1126color
1127        ; definitions ranging from 0 to 255 for the region speci‐
1128fied.
1129        ;
1130        ; The following parameters may be edited and/or expanded
1131        ; for future runs of SPLAT!  A total of  32  contour  re‐
1132gions
1133        ; may be defined in this file.
1134        ;
1135        ;
1136         80: 255,   0,   0
1137         90: 255, 128,   0
1138        100: 255, 165,   0
1139        110: 255, 206,   0
1140        120: 255, 255,   0
1141        130: 184, 255,   0
1142        140:   0, 255,   0
1143        150:   0, 208,   0
1144        160:   0, 196, 196
1145        170:   0, 148, 255
1146        180:  80,  80, 255
1147        190:   0,  38, 255
1148        200: 142,  63, 255
1149        210: 196,  54, 255
1150        220: 255,   0, 255
1151        230: 255, 194, 204
1152
1153       If  the path loss is less than 80 dB, the color Red (RGB =
1154255, 0, 0) is
1155       assigned to the region.  If the path loss is greater  than
1156or  equal  to
1157       80   dB,  but less than 90 db, then Dark Orange (255, 128,
11580) is assigned
1159       to the region.  Orange (255, 165, 0) is assigned  to   re‐
1160gions  having  a
1161       path   loss  greater than or equal to 90 dB, but less than
1162100 dB, and so
1163       on.  Greyscale terrain is  displayed  beyond  the  230  dB
1164path  loss  con‐
1165       tour.
1166
1167FFIIEELLDD SSTTRREENNGGTTHH AANNAALLYYSSIISS
1168       If  the  transmitter’s  effective  radiated power (ERP) is
1169specified in the
1170       transmitter’s _._l_r_p file, or expressed  on   the   command‐
1171line  using  the
1172       _‐_e_r_p   switch,   field   strength  contours  referenced to
1173decibels over one
1174       microvolt per meter (dBuV/m) rather  than  path  loss  are
1175produced:
1176
1177       splat ‐t wnjt‐dt ‐L 30.0 ‐erp 46000 ‐db 30 ‐o plot.ppm
1178
1179       The _‐_d_b switch can be used in this mode as before to limit
1180the  extent
1181       to  which  field  strength  contours  are  plotted.   When
1182plotting field
1183       strength  contours,  however, the argument given is inter‐
1184preted as  being
1185       expressed in dBuV/m.
1186
1187       SSPPLLAATT!!  field  strength  color  definition  files  share a
1188very similar
1189       structure to _._l_c_f files used for plotting path loss:
1190
1191        ;  SPLAT!  Auto‐generated Signal Color Definition ("wnjt‐
1192dt.scf") File
1193        ;
1194        ; Format for the parameters held in this file is as  fol‐
1195lows:
1196        ;
1197        ;    dBuV/m: red, green, blue
1198        ;
1199        ;  ...where  "dBuV/m"  is the signal strength (in dBuV/m)
1200and
1201        ; "red", "green", and "blue" are  the  corresponding  RGB
1202color
1203        ; definitions ranging from 0 to 255 for the region speci‐
1204fied.
1205        ;
1206        ; The following parameters may be edited and/or expanded
1207        ; for future runs of SPLAT!  A total of  32  contour  re‐
1208gions
1209        ; may be defined in this file.
1210        ;
1211        ;
1212        128: 255,   0,   0
1213        118: 255, 165,   0
1214        108: 255, 206,   0
1215         98: 255, 255,   0
1216         88: 184, 255,   0
1217         78:   0, 255,   0
1218         68:   0, 208,   0
1219         58:   0, 196, 196
1220         48:   0, 148, 255
1221         38:  80,  80, 255
1222         28:   0,  38, 255
1223         18: 142,  63, 255
1224          8: 140,   0, 128
1225
1226       If  the signal strength is greater than or equal to 128 dB
1227over 1 micro‐
1228       volt per meter (dBuV/m), the color Red (255, 0, 0) is dis‐
1229played for the
1230       region.   If  the signal strength is greater than or equal
1231to 118 dBuV/m,
1232       but  less  than 128 dBuV/m, then the  color  Orange  (255,
1233165, 0) is dis‐
1234       played,  and  so on.  Greyscale terrain is  displayed  for
1235regions  with
1236       signal strengths less than 8 dBuV/m.
1237
1238       Signal  strength contours for  some  common  VHF  and  UHF
1239broadcasting ser‐
1240       vices in the United States are as follows:
1241
1242
1243
1244
1245              Analog Television Broadcasting
1246              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1247              Channels 2‐6:       City Grade: >= 74 dBuV/m
1248                                     Grade A: >= 68 dBuV/m
1249                                     Grade B: >= 47 dBuV/m
1250              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1251              Channels 7‐13:      City Grade: >= 77 dBuV/m
1252                                     Grade A: >= 71 dBuV/m
1253                                     Grade B: >= 56 dBuV/m
1254              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1255              Channels 14‐69:   Indoor Grade: >= 94 dBuV/m
1256                                  City Grade: >= 80 dBuV/m
1257                                     Grade A: >= 74 dBuV/m
1258                                     Grade B: >= 64 dBuV/m
1259
1260              Digital Television Broadcasting
1261              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1262              Channels 2‐6:       City Grade: >= 35 dBuV/m
1263                           Service Threshold: >= 28 dBuV/m
1264              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1265              Channels 7‐13:      City Grade: >= 43 dBuV/m
1266                           Service Threshold: >= 36 dBuV/m
1267              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1268              Channels 14‐69:     City Grade: >= 48 dBuV/m
1269                           Service Threshold: >= 41 dBuV/m
1270
1271              NOAA Weather Radio (162.400 ‐ 162.550 MHz)
1272              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1273                         Reliable: >= 18 dBuV/m
1274                     Not reliable: <  18 dBuV/m
1275              Unlikely to receive: <  0 dBuV/m
1276
1277              FM Radio Broadcasting (88.1 ‐ 107.9 MHz)
1278              ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1279              Analog Service Contour:  60 dBuV/m
1280              Digital Service Contour: 65 dBuV/m
1281
1282
1283RREECCEEIIVVEEDD PPOOWWEERR LLEEVVEELL AANNAALLYYSSIISS
1284       If  the  transmitter’s  effective  radiated power (ERP) is
1285specified in the
1286       transmitter’s  _._l_r_p  file,  or  expressed on the  command‐
1287line using the
1288       _‐_e_r_p switch, and the _‐_d_b_m switch is invoked, received pow‐
1289er level  con‐
1290       tours referenced to decibels over one milliwatt (dBm)  are
1291produced:
1292
1293       splat  ‐t  wnjt‐dt  ‐L  30.0  ‐erp  46000 ‐dbm ‐db ‐100 ‐o
1294plot.ppm
1295
1296       The  _‐_d_b switch can be used to limit the extent  to  which
1297received power
1298       level  contours  are  plotted.  When plotting power  level
1299contours,  the
1300       argument given is interpreted as being expressed in dBm.
1301
1302       SSPPLLAATT!! received power level color definition files share a
1303very similar
1304       structure to the color definition files described earlier,
1305except  that
1306       the  power  levels  in  dBm may be either positive or neg‐
1307ative, and are
1308       limited to a range between +40 dBm and ‐200 dBm:
1309
1310        ;  SPLAT! Auto‐generated DBM  Signal  Level  Color  Defi‐
1311nition  ("wnjt‐
1312       dt.dcf") File
1313        ;
1314        ; Format for the parameters held in this file is as  fol‐
1315lows:
1316        ;
1317        ;    dBm: red, green, blue
1318        ;
1319        ;  ...where  "dBm" is the received signal power level be‐
1320tween +40 dBm
1321        ; and ‐200 dBm, and "red", "green", and  "blue"  are  the
1322corresponding
1323        ;   RGB  color  definitions ranging from 0 to 255 for the
1324region speci‐
1325       fied.
1326        ;
1327        ; The following parameters may be edited and/or expanded
1328        ; for future runs of SPLAT!  A total of  32  contour  re‐
1329gions
1330        ; may be defined in this file.
1331        ;
1332        ;
1333          +0: 255,   0,   0
1334         ‐10: 255, 128,   0
1335         ‐20: 255, 165,   0
1336         ‐30: 255, 206,   0
1337         ‐40: 255, 255,   0
1338         ‐50: 184, 255,   0
1339         ‐60:   0, 255,   0
1340         ‐70:   0, 208,   0
1341         ‐80:   0, 196, 196
1342         ‐90:   0, 148, 255
1343        ‐100:  80,  80, 255
1344        ‐110:   0,  38, 255
1345        ‐120: 142,  63, 255
1346        ‐130: 196,  54, 255
1347        ‐140: 255,   0, 255
1348        ‐150: 255, 194, 204
1349
1350
1351AANNTTEENNNNAA RRAADDIIAATTIIOONN PPAATTTTEERRNN PPAARRAAMMEETTEERRSS
1352       Normalized  field  voltage patterns for a transmitting an‐
1353tenna’s horizon‐
1354       tal  and  vertical planes are imported automatically  into
1355SSPPLLAATT!! when a
1356       path  loss, field strength, or received power level cover‐
1357age analysis is
1358       performed.   Antenna  pattern  data is read from a pair of
1359files having
1360       the  same  base name as the transmitter and LRP files, but
1361with  _._a_z  and
1362       _._e_l  extensions  for azimuth and elevation pattern  files,
1363respectively.
1364       Specifications regarding pattern rotation (if any) and me‐
1365chanical  beam
1366       tilt  and  tilt  direction  (if  any)  are also  contained
1367within SSPPLLAATT!!
1368       antenna pattern files.
1369
1370       For  example, the first few lines of a SSPPLLAATT!! azimuth pat‐
1371tern file might
1372       appear as follows (_k_v_e_a_._a_z):
1373
1374               183.0
1375               0       0.8950590
1376               1       0.8966406
1377               2       0.8981447
1378               3       0.8995795
1379               4       0.9009535
1380               5       0.9022749
1381               6       0.9035517
1382               7       0.9047923
1383               8       0.9060051
1384
1385       The  first  line of the _._a_z file specifies the  amount  of
1386azimuthal pat‐
1387       tern  rotation  (measured  clockwise in degrees from  True
1388North)  to  be
1389       applied  by SSPPLLAATT!! to the data contained in the _._a_z  file.
1390This is fol‐
1391       lowed by azimuth headings (0 to 360 degrees) and their as‐
1392sociated  nor‐
1393       malized field  patterns  (0.000  to  1.000)  separated  by
1394whitespace.
1395
1396       The   structure  of  SSPPLLAATT!!  elevation  pattern  files  is
1397slightly different.
1398       The first line of the _._e_l file specifies the amount of me‐
1399chanical  beam
1400       tilt   applied   to   the  antenna.   Note that a _d_o_w_n_w_a_r_d
1401_t_i_l_t (below the
1402       horizon) is expressed as a _p_o_s_i_t_i_v_e _a_n_g_l_e, while an _u_p_w_a_r_d
1403_t_i_l_t  (above
1404       the  horizon)  is expressed as a _n_e_g_a_t_i_v_e _a_n_g_l_e.  This da‐
1405ta is followed
1406       by the azimuthal  direction  of  the  tilt,  separated  by
1407whitespace.
1408
1409       The remainder of the file consists of elevation angles and
1410their corre‐
1411       sponding  normalized  voltage radiation pattern (0.000  to
14121.000) values
1413       separated by whitespace.  Elevation angles must  be  spec‐
1414ified  over  a
1415       ‐10.0  to  +90.0  degree  range.  As  was  the  convention
1416with mechanical
1417       beamtilt,  _n_e_g_a_t_i_v_e  _e_l_e_v_a_t_i_o_n _a_n_g_l_e_s are used  to  repre‐
1418sent  elevations
1419       _a_b_o_v_e  _t_h_e  _h_o_r_i_z_o_n,  while _p_o_s_i_t_i_v_e _a_n_g_l_e_s represents el‐
1420evations _b_e_l_o_w
1421       _t_h_e _h_o_r_i_z_o_n.
1422
1423       For  example,  the first few lines a SSPPLLAATT!! elevation pat‐
1424tern file  might
1425       appear as follows (_k_v_e_a_._e_l):
1426
1427               1.1    130.0
1428              ‐10.0   0.172
1429              ‐9.5    0.109
1430              ‐9.0    0.115
1431              ‐8.5    0.155
1432              ‐8.0    0.157
1433              ‐7.5    0.104
1434              ‐7.0    0.029
1435              ‐6.5    0.109
1436              ‐6.0    0.185
1437
1438       In  this  example,  the  antenna  is  mechanically  tilted
1439downward 1.1
1440       degrees towards an azimuth of 130.0 degrees.
1441
1442       For best results, the resolution of  azimuth  pattern  da‐
1443ta  should  be
1444       specified  to  the  nearest  degree azimuth, and elevation
1445pattern data
1446       resolution  should  be specified to the nearest  0.01  de‐
1447grees.   If  the
1448       pattern  data specified does not reach this level of reso‐
1449lution, SSPPLLAATT!!
1450       will  interpolate  the values provided  to  determine  the
1451data  at  the
1452       required resolution, although this may result in a loss in
1453accuracy.
1454
1455EEXXPPOORRTTIINNGG AANNDD IIMMPPOORRTTIINNGG RREEGGIIOONNAALL CCOONNTTOOUURR DDAATTAA
1456       Performing  a  regional  coverage analysis based on a Lon‐
1457gley‐Rice path
1458       analysis can be a very time consuming process,  especially
1459if the analy‐
1460       sis  is  performed  repeatedly  to  discover  what effects
1461changes to a
1462       transmitter’s antenna radiation pattern make to  the  pre‐
1463dicted  coverage
1464       area.
1465
1466       This process can be expedited by exporting the contour da‐
1467ta produced by
1468       SSPPLLAATT!! to an alphanumeric output _(_._a_n_o_) file.   The   data
1469contained  in
1470       this   file  can  then  be modified to incorporate antenna
1471pattern effects,
1472       and imported back into SSPPLLAATT!! to quickly produce a revised
1473contour map.
1474       Depending   on   the   way in which SSPPLLAATT!! is invoked, al‐
1475phanumeric output
1476       files can describe regional path loss,  signal   strength,
1477or  received
1478       signal power levels.
1479
1480       For   example, an alphanumeric output file containing path
1481loss informa‐
1482       tion can be generated by SSPPLLAATT!! for a receive site 30 feet
1483above ground
1484       level over a 50 mile radius surrounding a transmitter site
1485to a maximum
1486       path loss of 140 dB (assuming ERP is not specified in  the
1487transmitter’s
1488       _._l_r_p file) using the following syntax:
1489
1490       splat ‐t kvea ‐L 30.0 ‐R 50.0 ‐db 140 ‐ano pathloss.dat
1491
1492       If  ERP  is  specified  in the _._l_r_p file or on the command
1493line through the
1494       _‐_e_r_p switch, the alphanumeric output file   will   instead
1495contain  pre‐
1496       dicted   field   values  in  dBuV/m.   If the _‐_d_B_m command
1497line switch is
1498       used, then the alphanumeric  output  file   will   contain
1499receive  signal
1500       power levels in dBm.
1501
1502       SSPPLLAATT!!  alphanumeric output files can exceed many hundreds
1503of megabytes
1504       in size.  They contain information relating to the  bound‐
1505aries  of  the
1506       region   they  describe  followed  by  latitudes  (degrees
1507North), longitudes
1508       (degrees West), azimuths (referenced to True North),  ele‐
1509vations (to the
1510       first   obstruction),  followed  by  either  path loss (in
1511dB), received
1512       field strength (in  dBuV/m),  or  received  signal   power
1513level  (in  dBm)
1514       wwiitthhoouutt  rreeggaarrdd  ttoo  tthhee  ttrraannssmmiittttiinngg aanntteennnnaa’’ss rraaddiiaattiioonn
1515ppaatttteerrnn.
1516
1517       The  first few lines of a SSPPLLAATT!! alphanumeric output  file
1518could take on
1519       the following appearance (_p_a_t_h_l_o_s_s_._d_a_t):
1520
1521               119, 117    ; max_west, min_west
1522               35, 34      ; max_north, min_north
1523               34.2265424, 118.0631096, 48.199, ‐32.747, 67.70
1524               34.2270358, 118.0624421, 48.199, ‐19.161, 73.72
1525               34.2275292, 118.0617747, 48.199, ‐13.714, 77.24
1526               34.2280226, 118.0611072, 48.199, ‐10.508, 79.74
1527               34.2290094, 118.0597723, 48.199, ‐11.806, 83.26 *
1528               34.2295028, 118.0591048, 48.199, ‐11.806, 135.47 *
1529               34.2299962, 118.0584373, 48.199, ‐15.358, 137.06 *
1530               34.2304896, 118.0577698, 48.199, ‐15.358, 149.87 *
1531               34.2314763, 118.0564348, 48.199, ‐15.358, 154.16 *
1532               34.2319697, 118.0557673, 48.199, ‐11.806, 153.42 *
1533               34.2324631, 118.0550997, 48.199, ‐11.806, 137.63 *
1534               34.2329564, 118.0544322, 48.199, ‐11.806, 139.23 *
1535               34.2339432, 118.0530971, 48.199, ‐11.806, 139.75 *
1536               34.2344365, 118.0524295, 48.199, ‐11.806, 151.01 *
1537               34.2349299, 118.0517620, 48.199, ‐11.806, 147.71 *
1538               34.2354232, 118.0510944, 48.199, ‐15.358, 159.49 *
1539               34.2364099, 118.0497592, 48.199, ‐15.358, 151.67 *
1540
1541       Comments  can  be placed in the file if they are proceeded
1542by a semicolon
1543       character.   The vviimm text editor  has  proven  capable  of
1544editing files of
1545       this size.
1546
1547       Note  as was the case in the antenna pattern files,  nega‐
1548tive  elevation
1549       angles  refer to upward tilt (above  the  horizon),  while
1550positive angles
1551       refer  to downward tilt (below the horizon).  These angles
1552refer to  the
1553       elevation  to  the  receiving  antenna at the height above
1554ground level
1555       specified  using  the  _‐_L  switch   _i_f  the  path  between
1556transmitter  and
1557       receiver  is  unobstructed.   If  the   path  between  the
1558transmitter and
1559       receiver  is obstructed, an asterisk (*) is placed on  the
1560end  of  the
1561       line,  and  the elevation angle returned by SSPPLLAATT!!  refers
1562the elevation
1563       angle  to  the  first obstruction  rather  than  the  geo‐
1564graphic  location
1565       specified  on  the line.  This is done in response to  the
1566fact that the
1567       Longley‐Rice model considers the energy reaching a distant
1568point  over
1569       an  obstructed  path  to be the result of the energy scat‐
1570tered over the
1571       top of the first obstruction along the path.  Since energy
1572cannot reach
1573       the  obstructed  location  directly,  the actual elevation
1574angle to the
1575       destination over such a path becomes irrelevant.
1576
1577       When  modifying  SSPPLLAATT!! path loss files to reflect antenna
1578pattern  data,
1579       _o_n_l_y _t_h_e _l_a_s_t _n_u_m_e_r_i_c _c_o_l_u_m_n should be amended to  reflect
1580the antenna’s
1581       normalized gain at the azimuth and elevation angles  spec‐
1582ified  in  the
1583       file.  Programs and scripts  capable  of  performing  this
1584task are left as
1585       an exercise for the user.
1586
1587       Modified  alphanumeric output files can be  imported  back
1588into  SSPPLLAATT!!
1589       for  generating  revised  coverage  maps provided that the
1590ERP and ‐dBm
1591       options are used as they were when the  alphanumeric  out‐
1592put  file  was
1593       originally generated:
1594
1595       splat ‐t kvea ‐ani pathloss.dat ‐s city.dat ‐b  county.dat
1596‐o map.ppm
1597
1598       Note   that   alphanumeric output files generated by splat
1599cannot be used
1600       with splat‐hd, or vice‐versa   due   to   the   resolution
1601incompatibility
1602       between  the  two  versions of the program.  Also, each of
1603the three types
1604       of alphanumeric output files  are  incompatible  with  one
1605another,  so  a
1606       file   containing   path loss data cannot be imported into
1607SSPPLLAATT!! to pro‐
1608       duce signal strength or  received  power  level  contours,
1609etc.
1610
1611UUSSEERR‐‐DDEEFFIINNEEDD TTEERRRRAAIINN IINNPPUUTT FFIILLEESS
1612       A  user‐defined  terrain  file  is  a user‐generated  text
1613file  containing
1614       latitudes,  longitudes, and heights above ground level  of
1615specific ter‐
1616       rain  features  believed to be of importance to the SSPPLLAATT!!
1617analysis being
1618       conducted,  but  noticeably  absent  from  the  SDF  files
1619being used.  A
1620       user‐defined terrain file is imported into a SSPPLLAATT!! analy‐
1621sis using  the
1622       _‐_u_d_t switch:
1623
1624        splat ‐t tx_site ‐r rx_site ‐udt udt_file.txt ‐o map.ppm
1625
1626       A user‐defined terrain file has the  following  appearance
1627and structure:
1628
1629              40.32180556, 74.1325, 100.0 meters
1630              40.321805, 74.1315, 300.0
1631              40.3218055, 74.1305, 100.0 meters
1632
1633       Terrain  height  is interpreted as being described in feet
1634above  ground
1635       level  unless  followed  by the word _m_e_t_e_r_s, and is  added
1636_o_n _t_o_p _o_f the
1637       terrain  specified  in  the  SDF data  for  the  locations
1638specified.   Be
1639       aware  that  each user‐defined terrain  feature  specified
1640will be inter‐
1641       preted  as being 3‐arc seconds in both latitude and longi‐
1642tude  in  splat
1643       and  1  arc‐second  in  latitude  and  longitude in splat‐
1644hd.  Features
1645       described  in the user‐defined  terrain  file  that  over‐
1646lap  previously
1647       defined  features in the file are  ignored  by  SSPPLLAATT!!  to
1648avoid ambiguity.
1649
1650GGRROOUUNNDD CCLLUUTTTTEERR
1651       The  height  of  ground clutter can be specified using the
1652_‐_g_c switch:
1653
1654             splat  ‐t  wnjt‐dt  ‐r  kd2bd  ‐gc  30.0  ‐H   wnjt‐
1655dt_path.png
1656
1657       The  _‐_g_c  switch  as  the  effect of raising  the  overall
1658terrain  by  the
1659       specified  amount in feet (or meters if the _‐_m_e_t_r_i_c switch
1660is invoked),
1661       except  over  areas  at sea‐level and at the  transmitting
1662and  receiving
1663       antenna  locations.   Note that  the  addition  of  ground
1664clutter does not
1665       necessarily  modify the Longley‐Rice path loss results un‐
1666less the  addi‐
1667       tional  clutter height results in a switch in the propaga‐
1668tion mode from
1669       a  less  obstructed  path  to a more obstructed path (from
1670Line Of Sight to
1671       Single  Horizon  Diffraction Dominant, for  example).   It
1672does, however,
1673       affect  Fresnel zone clearances and line of sight determi‐
1674nations.
1675
1676SSIIMMPPLLEE TTOOPPOOGGRRAAPPHHIICC MMAAPP GGEENNEERRAATTIIOONN
1677       In certain situations it may be desirable  to  generate  a
1678topographic map
1679       of   a   region  without plotting coverage areas, line‐of‐
1680sight paths, or
1681       generating obstruction reports.  There are several ways of
1682doing  this.
1683       If  one  wishes to generate a topographic map illustrating
1684the location
1685       of a transmitter and receiver site  along  with  a   brief
1686text  report
1687       describing  the locations and distances between the sites,
1688the _‐_n switch
1689       should be invoked as follows:
1690
1691       splat ‐t tx_site ‐r rx_site ‐n ‐o topo_map.ppm
1692
1693       If no text report is desired, then the _‐_N switch is used:
1694
1695       splat ‐t tx_site ‐r rx_site ‐N ‐o topo_map.ppm
1696
1697       If a topographic map centered about a  single   site   out
1698to  a  minimum
1699       specified  radius is desired instead, a command similar to
1700the following
1701       can be used:
1702
1703       splat ‐t tx_site ‐R 50.0 ‐s NJ_Cities  ‐b  NJ_Counties  ‐o
1704topo_map.ppm
1705
1706       where  ‐R specifies the minimum radius of the map in miles
1707(or  kilome‐
1708       ters  if  the  _‐_m_e_t_r_i_c switch is  used).   Note  that  the
1709tx_site name and
1710       location are not displayed in this example.  If display of
1711this  infor‐
1712       mation  is  desired,  simply  create a  SSPPLLAATT!!  city  file
1713(_‐_s option) and
1714       append  it to the list of command‐line options illustrated
1715above.
1716
1717       If the _‐_o switch and output filename are omitted in  these
1718operations,
1719       topographic    output    is   written   to  a  file  named
1720_t_x___s_i_t_e_._p_p_m in the cur‐
1721       rent working directory by default.
1722
1723GGEEOORREEFFEERREENNCCEE FFIILLEE GGEENNEERRAATTIIOONN
1724       Topographic, coverage (_‐_c), and  path  loss  contour  (_‐_L)
1725maps  generated
1726       by  SSPPLLAATT!!  may be imported into XXaassttiirr (X Amateur Station
1727Tracking and
1728       Information Reporting) software by generating a  georefer‐
1729ence file using
1730       SSPPLLAATT!!’s _‐_g_e_o switch:
1731
1732       splat ‐t kd2bd ‐R 50.0 ‐s NJ_Cities ‐b NJ_Counties ‐geo ‐o
1733map.ppm
1734
1735       The  georeference file generated will have the  same  base
1736name as the _‐_o
1737       file  specified,  but  have  a  _._g_e_o extension, and permit
1738proper interpre‐
1739       tation and display of SSPPLLAATT!!’s  .ppm  graphics  in  XXaassttiirr
1740software.
1741
1742GGOOOOGGLLEE MMAAPP KKMMLL FFIILLEE GGEENNEERRAATTIIOONN
1743       Keyhole   Markup  Language  files  compatible  with GGooooggllee
1744EEaarrtthh may be gen‐
1745       erated by SSPPLLAATT!! when performing point‐to‐point   or   re‐
1746gional  coverage
1747       analyses by invoking the _‐_k_m_l switch:
1748
1749       splat ‐t wnjt‐dt ‐r kd2bd ‐kml
1750
1751       The  KML file generated will have the same filename struc‐
1752ture as a Path
1753       Analysis Report for the transmitter  and   receiver   site
1754names  given,
1755       except it will carry a  _._k_m_l extension.
1756
1757       Once   loaded  into  GGooooggllee EEaarrtthh (File ‐‐> Open), the KML
1758file will anno‐
1759       tate the map display with the names of   the   transmitter
1760and  receiver
1761       site  locations.   The viewpoint of the image will be from
1762the position
1763       of the transmitter site looking towards  the  location  of
1764the  receiver.
1765       The   point‐to‐point  path  between the sites will be dis‐
1766played as a white
1767       line while the RF  line‐of‐sight   path   will   be   dis‐
1768played  in  green.
1769       GGooooggllee   EEaarrtthh’s   navigation   tools   allow  the user to
1770"fly" around the
1771       path, identify landmarks, roads, and other  featured  con‐
1772tent.
1773
1774       When performing regional coverage analysis, the  _._k_m_l file
1775generated by
1776       SSPPLLAATT!!  will permit path loss or signal strength  contours
1777to be layered
1778       on  top  of GGooooggllee EEaarrtthh’s display in  a  semi‐transparent
1779manner.   The
1780       generated  _._k_m_l  file  will  have  the  same  basename  as
1781that of the _._p_p_m
1782       file normally generated.
1783
1784DDEETTEERRMMIINNAATTIIOONN OOFF AANNTTEENNNNAA HHEEIIGGHHTT AABBOOVVEE AAVVEERRAAGGEE TTEERRRRAAIINN
1785       SSPPLLAATT!!  determines  antenna  height  above average terrain
1786(HAAT) according
1787       to  the  procedure  defined   by   Federal  Communications
1788Commission Part
1789       73.313(d).  According to  this  definition,  terrain  ele‐
1790vations  along
1791       eight  radials  between  2  and 10 miles (3 and 16 kilome‐
1792ters) from the
1793       site being analyzed are sampled and averaged for  each  45
1794degrees  of
1795       azimuth  starting with True North.  If one or more radials
1796lie entirely
1797       over  water  or over land outside the United States (areas
1798for  which  no
1799       USGS topography data is available), then those radials are
1800omitted from
1801       the calculation of average terrain.
1802
1803       Note  that  SRTM‐3 elevation data, unlike older USGS data,
1804extends beyond
1805       the  borders  of the United States.  Therefore,  HAAT  re‐
1806sults may not be
1807       in  full compliance with FCC Part 73.313(d) in areas along
1808the  borders
1809       of  the United States if the SDF files used by SSPPLLAATT!!  are
1810SRTM‐derived.
1811
1812       When  performing  point‐to‐point  terrain analysis, SSPPLLAATT!!
1813determines  the
1814       antenna  height  above  average terrain only if enough to‐
1815pographic data
1816       has  already  been  loaded by the program to  perform  the
1817point‐to‐point
1818       analysis.   In  most cases, this will be true, unless  the
1819site in ques‐
1820       tion  does  not  lie  within 10 miles of the  boundary  of
1821the  topography
1822       data in memory.
1823
1824       When  performing  area  prediction  analysis,  enough  to‐
1825pography data is
1826       normally  loaded  by SSPPLLAATT!!  to  perform  average  terrain
1827calculations.
1828       Under  such  conditions,  SSPPLLAATT!!  will provide the antenna
1829height above
1830       average  terrain as well as the average terrain above mean
1831sea level for
1832       azimuths of 0, 45, 90, 135, 180, 225,  270,  and  315  de‐
1833grees, and include
1834       such  information in the generated site report.  If one or
1835more  of  the
1836       eight  radials  surveyed  fall over water, or over regions
1837for which no
1838       SDF  data  is available, SSPPLLAATT!! reports _N_o _T_e_r_r_a_i_n for the
1839radial  paths
1840       affected.
1841
1842AADDDDIITTIIOONNAALL IINNFFOORRMMAATTIIOONN
1843       The  latest news and information regarding SSPPLLAATT!! software
1844is available
1845       through   the   official    SSPPLLAATT!!   software   web   page
1846located   at:
1847       _h_t_t_p_:_/_/_w_w_w_._q_s_l_._n_e_t_/_k_d_2_b_d_/_s_p_l_a_t_._h_t_m_l.
1848
1849AAUUTTHHOORRSS
1850       John A. Magliacane, KD2BD <_k_d_2_b_d_@_a_m_s_a_t_._o_r_g>
1851              Creator, Lead Developer
1852
1853       Doug McDonald <_m_c_d_o_n_a_l_d_@_s_c_s_._u_i_u_c_._e_d_u>
1854              Original Longley‐Rice Model integration
1855
1856       Ron Bentley <_r_o_n_b_e_n_t_l_e_y_@_e_m_b_a_r_q_m_a_i_l_._c_o_m>
1857              Fresnel Zone plotting and clearance determination
1858
1859
1860
1861
1862KD2BD     Software                     15      November      2008
1863SPLAT!(1)
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
Impressum