1SPLAT!(1) KD2BD Software
2SPLAT!(1)
3
4
5
6NNAAMMEE
7 splat An RF SSignal PPropagation, LLoss, AAnd TTerrain analysis
8tool
9
10SSYYNNOOPPSSIISS
11 splat [‐t _t_r_a_n_s_m_i_t_t_e_r___s_i_t_e_._q_t_h] [‐r _r_e_c_e_i_v_e_r___s_i_t_e_._q_t_h]
12[‐c _r_x _a_n_t_e_n_n_a
13 _h_e_i_g_h_t _f_o_r _L_O_S _c_o_v_e_r_a_g_e _a_n_a_l_y_s_i_s _(_f_e_e_t_/_m_e_t_e_r_s_) _(_f_l_o_a_t_)]
14[‐L _r_x _a_n_t_e_n_n_a
15 _h_e_i_g_h_t _f_o_r _L_o_n_g_l_e_y_‐_R_i_c_e _c_o_v_e_r_a_g_e _a_n_a_l_y_s_i_s _(_f_e_e_t_/_m_e_t_e_r_s_)
16_(_f_l_o_a_t_)] [‐p
17 _t_e_r_r_a_i_n___p_r_o_f_i_l_e_._e_x_t] [‐e _e_l_e_v_a_t_i_o_n___p_r_o_f_i_l_e_._e_x_t] [‐h
18_h_e_i_g_h_t___p_r_o_f_i_l_e_._e_x_t]
19 [‐H _n_o_r_m_a_l_i_z_e_d___h_e_i_g_h_t___p_r_o_f_i_l_e_._e_x_t] [‐l
20_L_o_n_g_l_e_y_‐_R_i_c_e___p_r_o_f_i_l_e_._e_x_t] [‐o
21 _t_o_p_o_g_r_a_p_h_i_c___m_a_p___f_i_l_e_n_a_m_e_._p_p_m] [‐b
22_c_a_r_t_o_g_r_a_p_h_i_c___b_o_u_n_d_a_r_y___f_i_l_e_n_a_m_e_._d_a_t]
23 [‐s _s_i_t_e_/_c_i_t_y___d_a_t_a_b_a_s_e_._d_a_t] [‐d _s_d_f___d_i_r_e_c_t_o_r_y___p_a_t_h] [‐m
24_e_a_r_t_h _r_a_d_i_u_s
25 _m_u_l_t_i_p_l_i_e_r _(_f_l_o_a_t_)] [‐f _f_r_e_q_u_e_n_c_y _(_M_H_z_) _f_o_r _F_r_e_s_n_e_l _z_o_n_e
26_c_a_l_c_u_l_a_t_i_o_n_s
27 _(_f_l_o_a_t_)] [‐R _m_a_x_i_m_u_m _c_o_v_e_r_a_g_e _r_a_d_i_u_s _(_m_i_l_e_s_/_k_i_l_o_m_e_t_e_r_s_)
28_(_f_l_o_a_t_)] [‐dB
29 _t_h_r_e_s_h_o_l_d _b_e_y_o_n_d _w_h_i_c_h _c_o_n_t_o_u_r_s _w_i_l_l _n_o_t _b_e _d_i_s_p_l_a_y_e_d]
30[‐gc _g_r_o_u_n_d
31 _c_l_u_t_t_e_r _h_e_i_g_h_t _(_f_e_e_t_/_m_e_t_e_r_s_) _(_f_l_o_a_t_)] [‐fz _F_r_e_s_n_e_l _z_o_n_e
32_c_l_e_a_r_a_n_c_e _p_e_r_‐
33 _c_e_n_t_a_g_e _(_d_e_f_a_u_l_t _= _6_0_)] [‐ano _a_l_p_h_a_n_u_m_e_r_i_c _o_u_t_p_u_t _f_i_l_e
34_n_a_m_e] [‐ani
35 _a_l_p_h_a_n_u_m_e_r_i_c _i_n_p_u_t _f_i_l_e _n_a_m_e] [‐udt
36_u_s_e_r___d_e_f_i_n_e_d___t_e_r_r_a_i_n___f_i_l_e_._d_a_t] [‐n]
37 [‐N] [‐nf] [‐dbm] [‐ngs] [‐geo] [‐kml] [‐gpsav] [‐metric]
38
39DDEESSCCRRIIPPTTIIOONN
40 SSPPLLAATT!! is a powerful terrestrial RF propagation and ter‐
41rain analysis
42 tool for the spectrum between 20 MHz and 20 GHz. SSPPLLAATT!!
43is free soft‐
44 ware, and is designed for operation on Unix and Linux‐
45based worksta‐
46 tions. Redistribution and/or modification is permitted
47under the terms
48 of the GNU General Public License, Version 2, as published
49by the Free
50 Software Foundation. Adoption of SSPPLLAATT!! source code in
51proprietary or
52 closed‐source applications is a violation of this li‐
53cense and is
54 ssttrriiccttllyy forbidden.
55
56 SSPPLLAATT!! is distributed in the hope that it will be use‐
57ful, but WITHOUT
58 ANY WARRANTY, without even the implied warranty of MER‐
59CHANTABILITY or
60 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
61Public License
62 for more details.
63
64IINNTTRROODDUUCCTTIIOONN
65 Applications of SSPPLLAATT!! include the visualization, design,
66and link bud‐
67 get analysis of wireless Wide Area Networks (WANs), com‐
68mercial and ama‐
69 teur radio communication systems above 20 MHz, microwave
70links, fre‐
71 quency coordination and interference studies, and the
72prediction of
73 analog and digital terrestrial radio and television con‐
74tour regions.
75
76 SSPPLLAATT!! provides RF site engineering data such as great
77circle distances
78 and bearings between sites, antenna elevation angles (up‐
79tilt), depres‐
80 sion angles (downtilt), antenna height above mean sea
81level, antenna
82 height above average terrain, bearings, distances, and
83elevations to
84 known obstructions, Longley‐Rice path attenuation, and re‐
85ceived signal
86 strength. In addition, the minimum antenna height re‐
87quirements needed
88 to clear terrain, the first Fresnel zone, and any user‐
89definable per‐
90 centage of the first Fresnel zone are also provided.
91
92 SSPPLLAATT!! produces reports, graphs, and high resolution to‐
93pographic maps
94 that depict line‐of‐sight paths, and regional path loss
95and signal
96 strength contours through which expected coverage areas of
97transmitters
98 and repeater systems can be obtained. When performing
99line‐of‐sight
100 and Longley‐Rice analyses in situations where multiple
101transmitter or
102 repeater sites are employed, SSPPLLAATT!! determines individual
103and mutual
104 areas of coverage within the network specified.
105
106IINNPPUUTT FFIILLEESS
107 SSPPLLAATT!! is a command‐line driven application and
108reads input data
109 through a number of data files. Some files are mandatory
110for success‐
111 ful execution of the program, while others are option‐
112al. Mandatory
113 files include digital elevation topography models in the
114form of SPLAT
115 Data Files (SDF files), site location files (QTH files),
116and Longley‐
117 Rice model parameter files (LRP files). Optional files
118include city
119 location files, cartographic boundary files, user‐de‐
120fined terrain
121 files, path loss input files, antenna radiation pattern
122files, and
123 color definition files.
124
125SSPPLLAATT DDAATTAA FFIILLEESS
126 SSPPLLAATT!! imports topographic data in the form of SPLAT Data
127Files (SDFs).
128 These files may be generated from a number of information
129sources. In
130 the United States, SPLAT Data Files can be generated
131through U.S. Geo‐
132 logical Survey Digital Elevation Models (DEMs) using the
133ppoossttddoowwnnllooaadd
134 and uussggss22ssddff utilities included with SSPPLLAATT!!. USGS Dig‐
135ital Elevation
136 Models compatible with these utilities may be down‐
137loaded from:
138 _h_t_t_p_:_/_/_e_d_c_f_t_p_._c_r_._u_s_g_s_._g_o_v_/_p_u_b_/_d_a_t_a_/_D_E_M_/_2_5_0_/.
139
140 Significantly better resolution and accuracy can be ob‐
141tained through
142 the use of SRTM Version 2 digital elevation models, es‐
143pecially when
144 supplemented by USGS‐derived SDF data. These one‐degree
145by one‐degree
146 models are the product of the Space Shuttle STS‐99
147Radar Topography
148 Mission, and are available for most populated regions
149of the Earth.
150 SPLAT Data Files may be generated from 3 arc‐second SRTM‐3
151data using
152 the included ssrrttmm22ssddff utility. SRTM‐3 Version 2 data
153may be obtained
154 through anonymous FTP from:
155_f_t_p_:_/_/_e_0_s_r_p_0_1_u_._e_c_s_._n_a_s_a_._g_o_v_:_2_1_/_s_r_t_m_/_v_e_r_‐
156 _s_i_o_n_2_/_S_R_T_M_3_/
157
158 Note that SRTM filenames refer to the latitude and
159longitude of the
160 southwest corner of the topographic dataset contained
161within the file.
162 Therefore, the region of interest must lie north and east
163of the lati‐
164 tude and longitude provided in the SRTM filename.
165
166 The ssrrttmm22ssddff utility may also be used to convert 3‐arc
167second SRTM data
168 in Band Interleaved by Line (.BIL) format for use with
169SSPPLLAATT!!. This
170 data is available via the web at:
171_h_t_t_p_:_/_/_s_e_a_m_l_e_s_s_._u_s_g_s_._g_o_v_/_w_e_b_‐
172 _s_i_t_e_/_s_e_a_m_l_e_s_s_/
173
174 Band Interleaved by Line data must be downloaded in a
175very specific
176 manner to be compatible with ssrrttmm22ssddff and SSPPLLAATT!!.
177Please consult
178 ssrrttmm22ssddff’s documentation for instructions on download‐
179ing .BIL topo‐
180 graphic data through the USGS’s Seamless Web Site.
181
182 Even greater resolution and accuracy can be obtained by
183using 1 arc‐
184 second SRTM‐1 Version 2 topography data. This data is
185available for
186 the United States and its territories and possessions, and
187may be down‐
188 loaded from:
189_f_t_p_:_/_/_e_0_s_r_p_0_1_u_._e_c_s_._n_a_s_a_._g_o_v_:_2_1_/_s_r_t_m_/_v_e_r_s_i_o_n_2_/_S_R_T_M_1_/
190
191 High resolution SDF files for use with SSPPLLAATT!! HHDD may be
192generated from
193 data in this format using the ssrrttmm22ssddff‐‐hhdd utility.
194
195 Despite the higher accuracy that SRTM data has to offer,
196some voids in
197 the data sets exist. When voids are detected, the
198ssrrttmm22ssddff and
199 ssrrttmm22ssddff‐‐hhdd utilities replace them with corresponding
200data found in
201 uussggss22ssddff generated SDF files. If USGS‐derived SDF data
202is not avail‐
203 able, voids are handled through adjacent pixel averag‐
204ing, or direct
205 replacement.
206
207 SPLAT Data Files contain integer value topographic eleva‐
208tions in meters
209 referenced to mean sea level for 1‐degree by 1‐degree re‐
210gions of the
211 Earth. SDF files can be read by SSPPLLAATT!! in either
212standard format
213 (_._s_d_f) as generated directly by the uussggss22ssddff, ssrrttmm22ssddff,
214and ssrrttmm22ssddff‐‐hhdd
215 utilities, or in bzip2 compressed format (_._s_d_f_._b_z_2).
216Since uncom‐
217 pressed files can be read slightly faster than files
218that have been
219 compressed, SSPPLLAATT!! searches for needed SDF data in uncom‐
220pressed format
221 first. If uncompressed data cannot be located, SSPPLLAATT!!
222then searches
223 for data in bzip2 compressed format. If no compressed SDF
224files can be
225 found for the region requested, SSPPLLAATT!! assumes the re‐
226gion is over
227 water, and will assign an elevation of sea‐level to these
228areas.
229
230 This feature of SSPPLLAATT!! makes it possible to perform path
231analysis not
232 only over land, but also between coastal areas not repre‐
233sented by Digi‐
234 tal Elevation Model data. However, this behavior of
235SSPPLLAATT!! under‐
236 scores the importance of having all the SDF files re‐
237quired for the
238 region being analyzed if meaningful results are to be ex‐
239pected.
240
241SSIITTEE LLOOCCAATTIIOONN ((QQTTHH)) FFIILLEESS
242 SSPPLLAATT!! imports site location information of transmitter
243and receiver
244 sites analyzed by the program from ASCII files having a
245_._q_t_h extension.
246 QTH files contain the site’s name, the site’s latitude
247(positive if
248 North of the equator, negative if South), the site’s
249longitude (in
250 degrees West, 0 to 360 degrees, or degrees East 0 to ‐360
251degrees), and
252 the site’s antenna height above ground level (AGL), each
253separated by a
254 single line‐feed character. The antenna height is assumed
255to be speci‐
256 fied in feet unless followed by the letter _m or the
257word _m_e_t_e_r_s in
258 either upper or lower case. Latitude and longitude in‐
259formation may be
260 expressed in either decimal format (74.6864) or degree,
261minute, second
262 (DMS) format (74 41 11.0).
263
264 For example, a site location file describing television
265station WNJT‐
266 DT, Trenton, NJ (_w_n_j_t_‐_d_t_._q_t_h) might read as follows:
267
268 WNJT‐DT
269 40.2828
270 74.6864
271 990.00
272
273 Each transmitter and receiver site analyzed by SSPPLLAATT!!
274must be repre‐
275 sented by its own site location (QTH) file.
276
277LLOONNGGLLEEYY‐‐RRIICCEE PPAARRAAMMEETTEERR ((LLRRPP)) FFIILLEESS
278 Longley‐Rice parameter data files are required for SSPPLLAATT!!
279to determine
280 RF path loss, field strength, or received signal power
281level in either
282 point‐to‐point or area prediction mode. Longley‐Rice
283model parameter
284 data is read from files having the same base name as the
285transmitter
286 site QTH file, but with a _._l_r_p extension. SSPPLLAATT!! LRP
287files share the
288 following format (_w_n_j_t_‐_d_t_._l_r_p):
289
290 15.000 ; Earth Dielectric Constant (Relative per‐
291mittivity)
292 0.005 ; Earth Conductivity (Siemens per meter)
293 301.000 ; Atmospheric Bending Constant (N‐units)
294 647.000 ; Frequency in MHz (20 MHz to 20 GHz)
295 5 ; Radio Climate (5 = Continental Temper‐
296ate)
297 0 ; Polarization (0 = Horizontal, 1 = Verti‐
298cal)
299 0.50 ; Fraction of situations (50% of loca‐
300tions)
301 0.90 ; Fraction of time (90% of the time)
302 46000.0 ; ERP in Watts (optional)
303
304 If an LRP file corresponding to the tx_site QTH file can‐
305not be found,
306 SSPPLLAATT!! scans the current working directory for the file
307"splat.lrp".
308 If this file cannot be found, then default parameters will
309be assigned
310 by SSPPLLAATT!! and a corresponding "splat.lrp" file containing
311these default
312 parameters will be written to the current working directo‐
313ry. The gen‐
314 erated "splat.lrp" file can then be edited by the user as
315needed.
316
317 Typical Earth dielectric constants and conductivity val‐
318ues are as fol‐
319 lows:
320 Dielectric Constant Conductiv‐
321ity
322 Salt water : 80 5.000
323 Good ground : 25 0.020
324 Fresh water : 80 0.010
325 Marshy land : 12 0.007
326 Farmland, forest : 15 0.005
327 Average ground : 15 0.005
328 Mountain, sand : 13 0.002
329 City : 5 0.001
330 Poor ground : 4 0.001
331
332 Radio climate codes used by SSPPLLAATT!! are as follows:
333
334 1: Equatorial (Congo)
335 2: Continental Subtropical (Sudan)
336 3: Maritime Subtropical (West coast of Africa)
337 4: Desert (Sahara)
338 5: Continental Temperate
339 6: Maritime Temperate, over land (UK and west
340coasts of US &
341 EU)
342 7: Maritime Temperate, over sea
343
344 The Continental Temperate climate is common to large land
345masses in the
346 temperate zone, such as the United States. For paths
347shorter than 100
348 km, there is little difference between Continental and
349Maritime Temper‐
350 ate climates.
351
352 The seventh and eighth parameters in the _._l_r_p file corre‐
353spond to the
354 statistical analysis provided by the Longley‐Rice model.
355In this exam‐
356 ple, SSPPLLAATT!! will return the maximum path loss occurring
35750% of the time
358 (fraction of time) in 90% of situations (fraction of situ‐
359ations). This
360 is often denoted as F(50,90) in Longley‐Rice studies. In
361the United
362 States, an F(50,90) criteria is typically used for digi‐
363tal television
364 (8‐level VSB modulation), while F(50,50) is used for
365analog (VSB‐
366 AM+NTSC) broadcasts.
367
368 For further information on these parameters, see:
369_h_t_t_p_:_/_/_f_l_a_t_‐
370 _t_o_p_._i_t_s_._b_l_d_r_d_o_c_._g_o_v_/_i_t_m_._h_t_m_l and
371_h_t_t_p_:_/_/_w_w_w_._s_o_f_t_w_r_i_g_h_t_._c_o_m_/_f_a_q_/_e_n_g_i_‐
372 _n_e_e_r_i_n_g_/_p_r_o_p___l_o_n_g_l_e_y___r_i_c_e_._h_t_m_l
373
374 The final parameter in the _._l_r_p file corresponds to the
375transmitter’s
376 effective radiated power, and is optional. If it is in‐
377cluded in the
378 _._l_r_p file, then SSPPLLAATT!! will compute received signal
379strength levels and
380 field strength level contours when performing Longley‐Rice
381studies. If
382 the parameter is omitted, path loss is computed instead.
383The ERP pro‐
384 vided in the _._l_r_p file can be overridden by using
385SSPPLLAATT!!’s _‐_e_r_p com‐
386 mand‐line switch. If the _._l_r_p file contains an ERP pa‐
387rameter and the
388 generation of path loss rather than field strength con‐
389tours is desired,
390 the ERP can be assigned to zero using the _‐_e_r_p switch
391without having to
392 edit the _._l_r_p file to accomplish the same result.
393
394CCIITTYY LLOOCCAATTIIOONN FFIILLEESS
395 The names and locations of cities, tower sites, or oth‐
396er points of
397 interest may be imported and plotted on topographic maps
398generated by
399 SSPPLLAATT!!. SSPPLLAATT!! imports the names of cities and locations
400from ASCII
401 files containing the location of interest’s name, lati‐
402tude, and longi‐
403 tude. Each field is separated by a comma. Each record is
404separated by
405 a single line feed character. As was the case with
406the _._q_t_h files,
407 latitude and longitude information may be entered in ei‐
408ther decimal or
409 degree, minute, second (DMS) format.
410
411 For example (_c_i_t_i_e_s_._d_a_t):
412
413 Teaneck, 40.891973, 74.014506
414 Tenafly, 40.919212, 73.955892
415 Teterboro, 40.859511, 74.058908
416 Tinton Falls, 40.279966, 74.093924
417 Toms River, 39.977777, 74.183580
418 Totowa, 40.906160, 74.223310
419 Trenton, 40.219922, 74.754665
420
421 A total of five separate city data files may be imported
422at a time, and
423 there is no limit to the size of these files. SSPPLLAATT!!
424reads city data
425 on a "first come/first served" basis, and plots only
426those locations
427 whose annotations do not conflict with annotations of
428locations read
429 earlier in the current city data file, or in previous
430files. This
431 behavior minimizes clutter in SSPPLLAATT!! generated topograph‐
432ic maps, but
433 also mandates that important locations be placed toward
434the beginning
435 of the first city data file, and locations less important
436be positioned
437 further down the list or in subsequent data files.
438
439 City data files may be generated manually using any
440text editor,
441 imported from other sources, or derived from data avail‐
442able from the
443 U.S. Census Bureau using the cciittyyddeeccooddeerr utility included
444with SSPPLLAATT!!.
445 Such data is available free of charge via the
446Internet at:
447 _h_t_t_p_:_/_/_w_w_w_._c_e_n_s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_b_d_y___f_i_l_e_s_._h_t_m_l, and
448must be in ASCII
449 format.
450
451CCAARRTTOOGGRRAAPPHHIICC BBOOUUNNDDAARRYY DDAATTAA FFIILLEESS
452 Cartographic boundary data may also be imported to plot
453the boundaries
454 of cities, counties, or states on topographic maps gener‐
455ated by SSPPLLAATT!!.
456 Such data must be of the form of ARC/INFO Ungenerate
457(ASCII Format)
458 Metadata Cartographic Boundary Files, and are available
459from the U.S.
460 Census Bureau via the Internet at:
461_h_t_t_p_:_/_/_w_w_w_._c_e_n_‐
462 _s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_c_o_2_0_0_0_._h_t_m_l_#_a_s_c_i_i and
463_h_t_t_p_:_/_/_w_w_w_._c_e_n_‐
464 _s_u_s_._g_o_v_/_g_e_o_/_w_w_w_/_c_o_b_/_p_l_2_0_0_0_._h_t_m_l_#_a_s_c_i_i. A total of five
465separate carto‐
466 graphic boundary files may be imported at a time. It is
467not necessary
468 to import state boundaries if county boundaries have
469already been
470 imported.
471
472PPRROOGGRRAAMM OOPPEERRAATTIIOONN
473 SSPPLLAATT!! is invoked via the command‐line using a series of
474switches and
475 arguments. Since SSPPLLAATT!! is a CPU and memory intensive
476application,
477 this type of interface minimizes overhead and lends
478itself well to
479 scripted (batch) operations. SSPPLLAATT!!’s CPU and memory
480scheduling prior‐
481 ity may be modified through the use of the Unix nniiccee com‐
482mand.
483
484 The number and type of switches passed to SSPPLLAATT!! deter‐
485mine its mode of
486 operation and method of output data generation. Nearly
487all of SSPPLLAATT!!’s
488 switches may be cascaded in any order on the command line
489when invoking
490 the program.
491
492 Simply typing splat on the command line will return a
493summary of
494 SSPPLLAATT!!’s command line options:
495
496 ‐‐==[ SPLAT! v1.3.0 Available Options...
497]==‐‐
498
499 ‐t txsite(s).qth (max of 4 with ‐c, max of 30 with
500‐L)
501 ‐r rxsite.qth
502 ‐c plot coverage of TX(s) with an RX antenna at X
503feet/meters AGL
504 ‐L plot path loss map of TX based on an RX at X
505feet/meters AGL
506 ‐s filename(s) of city/site file(s) to import (5 max)
507 ‐b filename(s) of cartographic boundary file(s) to
508import (5 max)
509 ‐p filename of terrain profile graph to plot
510 ‐e filename of terrain elevation graph to plot
511 ‐h filename of terrain height graph to plot
512 ‐H filename of normalized terrain height graph to
513plot
514 ‐l filename of path loss graph to plot
515 ‐o filename of topographic map to generate (.ppm)
516 ‐u filename of user‐defined terrain file to import
517 ‐d sdf file directory path (overrides path in
518~/.splat_path file)
519 ‐m earth radius multiplier
520 ‐n do not plot LOS paths in .ppm maps
521 ‐N do not produce unnecessary site or obstruction re‐
522ports
523 ‐f frequency for Fresnel zone calculation (MHz)
524 ‐R modify default range for ‐c or ‐L (miles/kilome‐
525ters)
526 ‐db threshold beyond which contours will not be dis‐
527played
528 ‐nf do not plot Fresnel zones in height plots
529 ‐fz Fresnel zone clearance percentage (default = 60)
530 ‐gc ground clutter height (feet/meters)
531 ‐ngs display greyscale topography as white in .ppm
532files
533 ‐erp override ERP in .lrp file (Watts)
534 ‐ano name of alphanumeric output file
535 ‐ani name of alphanumeric input file
536 ‐udt filename of user defined terrain input file
537 ‐kml generate Google Earth (.kml) compatible output
538 ‐geo generate an Xastir .geo georeference file (with
539.ppm output)
540 ‐dbm plot signal power level contours rather than field
541strength
542 ‐gpsav preserve gnuplot temporary working files after
543SPLAT! execution
544 ‐metric employ metric rather than imperial units for all
545user I/O
546
547 The command‐line options for splat and splat‐hd are iden‐
548tical.
549
550 SSPPLLAATT!! operates in two distinct modes: _p_o_i_n_t_‐_t_o_‐_p_o_i_n_t
551_m_o_d_e, and _a_r_e_a
552 _p_r_e_d_i_c_t_i_o_n _m_o_d_e. Either a line‐of‐sight (LOS) or Long‐
553ley‐Rice Irregu‐
554 lar Terrain (ITM) propagation model may be invoked by the
555user. True
556 Earth, four‐thirds Earth, or any other user‐defined Earth
557radius may be
558 specified when performing line‐of‐sight analysis.
559
560PPOOIINNTT‐‐TTOO‐‐PPOOIINNTT AANNAALLYYSSIISS
561 SSPPLLAATT!! may be used to perform line‐of‐sight terrain
562analysis between
563 two specified site locations. For example:
564
565 splat ‐t tx_site.qth ‐r rx_site.qth
566
567 invokes a line‐of‐sight terrain analysis between the
568transmitter speci‐
569 fied in _t_x___s_i_t_e_._q_t_h and receiver specified in _r_x___s_i_t_e_._q_t_h
570using a True
571 Earth radius model, and writes a SSPPLLAATT!! Path Analysis
572Report to the
573 current working directory. The report contains details of
574the trans‐
575 mitter and receiver sites, and identifies the location of
576any obstruc‐
577 tions detected along the line‐of‐sight path. If an ob‐
578struction can be
579 cleared by raising the receive antenna to a greater al‐
580titude, SSPPLLAATT!!
581 will indicate the minimum antenna height required for a
582line‐of‐sight
583 path to exist between the transmitter and receiver loca‐
584tions specified.
585 Note that imperial units (miles, feet) are specified un‐
586less the _‐_m_e_t_r_i_c
587 switch is added to SSPPLLAATT!!’s command line options:
588
589 splat ‐t tx_site.qth ‐r rx_site.qth ‐metric
590
591 If the antenna must be raised a significant amount, this
592determination
593 may take a few moments. Note that the results provided
594are the _m_i_n_i_m_u_m
595 necessary for a line‐of‐sight path to exist, and in the
596case of this
597 simple example, do not take Fresnel zone clearance re‐
598quirements into
599 consideration.
600
601 _q_t_h extensions are assumed by SSPPLLAATT!! for QTH files, and
602are optional
603 when specifying ‐t and ‐r arguments on the command‐line.
604SSPPLLAATT!! auto‐
605 matically reads all SPLAT Data Files necessary to con‐
606duct the terrain
607 analysis between the sites specified. SSPPLLAATT!!
608searches for the
609 required SDF files in the current working directory
610first. If the
611 needed files are not found, SSPPLLAATT!! then searches in the
612path specified
613 by the _‐_d command‐line switch:
614
615 splat ‐t tx_site ‐r rx_site ‐d /cdrom/sdf/
616
617 An external directory path may be specified by placing a
618".splat_path"
619 file under the user’s home directory. This file must con‐
620tain the full
621 directory path of last resort to all the SDF files.
622The path in the
623 _$_H_O_M_E_/_._s_p_l_a_t___p_a_t_h file must be of the form of a single
624line of ASCII
625 text:
626
627 /opt/splat/sdf/
628
629 and can be generated using any text editor.
630
631 A graph of the terrain profile between the receiver
632and transmitter
633 locations as a function of distance from the receiver can
634be generated
635 by adding the _‐_p switch:
636
637 splat ‐t tx_site ‐r rx_site ‐p terrain_profile.png
638
639 SSPPLLAATT!! invokes ggnnuupplloott when generating graphs. The file‐
640name extension
641 specified to SSPPLLAATT!! determines the format of the graph
642produced. _._p_n_g
643 will produce a 640x480 color PNG graphic file, while _._p_s
644or _._p_o_s_t_s_c_r_i_p_t
645 will produce postscript output. Output in formats such as
646GIF, Adobe
647 Illustrator, AutoCAD dxf, LaTeX, and many others are
648available. Please
649 consult ggnnuupplloott, and ggnnuupplloott’s documentation for details
650on all the
651 supported output formats.
652
653 A graph of elevations subtended by the terrain between the
654receiver and
655 transmitter as a function of distance from the receiver
656can be gener‐
657 ated by using the _‐_e switch:
658
659 splat ‐t tx_site ‐r rx_site ‐e elevation_profile.png
660
661 The graph produced using this switch illustrates the
662elevation and
663 depression angles resulting from the terrain between
664the receiver’s
665 location and the transmitter site from the per‐
666spective of the
667 receiver’s location. A second trace is plotted between
668the left side
669 of the graph (receiver’s location) and the location of the
670transmitting
671 antenna on the right. This trace illustrates the el‐
672evation angle
673 required for a line‐of‐sight path to exist between the
674receiver and
675 transmitter locations. If the trace intersects the ele‐
676vation profile
677 at any point on the graph, then this is an indication
678that a line‐of‐
679 sight path does not exist under the conditions given, and
680the obstruc‐
681 tions can be clearly identified on the graph at the
682point(s) of inter‐
683 section.
684
685 A graph illustrating terrain height referenced to a line‐
686of‐sight path
687 between the transmitter and receiver may be generated
688using the _‐_h
689 switch:
690
691 splat ‐t tx_site ‐r rx_site ‐h height_profile.png
692
693 A terrain height plot normalized to the transmitter
694and receiver
695 antenna heights can be obtained using the _‐_H switch:
696
697 splat ‐t tx_site ‐r rx_site ‐H normalized_height_pro‐
698file.png
699
700 A contour of the Earth’s curvature is also plotted in this
701mode.
702
703 The first Fresnel Zone, and 60% of the first Fresnel Zone
704can be added
705 to height profile graphs by adding the _‐_f switch, and
706specifying a fre‐
707 quency (in MHz) at which the Fresnel Zone should be mod‐
708eled:
709
710 splat ‐t tx_site ‐r rx_site ‐f 439.250 ‐H normal‐
711ized_height_profile.png
712
713 Fresnel Zone clearances other 60% can be specified using
714the _‐_f_z switch
715 as follows:
716
717 splat ‐t tx_site ‐r rx_site ‐f 439.250 ‐fz 75 ‐H
718height_profile2.png
719
720 A graph showing Longley‐Rice path loss may be plotted
721using the _‐_l
722 switch:
723
724 splat ‐t tx_site ‐r rx_site ‐l path_loss_profile.png
725
726 As before, adding the _‐_m_e_t_r_i_c switch forces the graphs to
727be plotted
728 using metric units of measure. The _‐_g_p_s_a_v switch in‐
729structs SSPPLLAATT!! to
730 preserve (rather than delete) the ggnnuupplloott working files
731generated dur‐
732 ing SSPPLLAATT!! execution, allowing the user to edit these
733files and re‐run
734 ggnnuupplloott if desired.
735
736 When performing a point‐to‐point analysis, a SSPPLLAATT!!
737Path Analysis
738 Report is generated in the form of a text file with a
739_._t_x_t filename
740 extension. The report contains bearings and distances
741between the
742 transmitter and receiver, as well as the free‐space and
743Longley‐Rice
744 path loss for the path being analyzed. The mode of propa‐
745gation for the
746 path is given as _L_i_n_e_‐_o_f_‐_S_i_g_h_t, _S_i_n_g_l_e _H_o_r_i_z_o_n,
747_D_o_u_b_l_e _H_o_r_i_z_o_n,
748 _D_i_f_f_r_a_c_t_i_o_n _D_o_m_i_n_a_n_t, or _T_r_o_p_o_s_c_a_t_t_e_r _D_o_m_i_n_a_n_t.
749
750 Distances and locations to known obstructions along the
751path between
752 transmitter and receiver are also provided. If the
753transmitter’s
754 effective radiated power is specified in the transmitter’s
755correspond‐
756 ing _._l_r_p file, then predicted signal strength and an‐
757tenna voltage at
758 the receiving location is also provided in the Path Analy‐
759sis Report.
760
761 To determine the signal‐to‐noise (SNR) ratio at remote
762location where
763 random Johnson (thermal) noise is the primary limiting
764factor in recep‐
765 tion:
766
767 _S_N_R=_T‐_N_J‐_L+_G‐_N_F
768
769 where TT is the ERP of the transmitter in dBW in the di‐
770rection of the
771 receiver, NNJJ is Johnson Noise in dBW (‐136 dBW for a 6
772MHz television
773 channel), LL is the path loss provided by SSPPLLAATT!! in dB (as
774a _p_o_s_i_t_i_v_e
775 number), GG is the receive antenna gain in dB over iso‐
776tropic, and NNFF is
777 the receiver noise figure in dB.
778
779 TT may be computed as follows:
780
781 _T=_T_I+_G_T
782
783 where TTII is actual amount of RF power delivered to the
784transmitting
785 antenna in dBW, GGTT is the transmitting antenna gain (over
786isotropic) in
787 the direction of the receiver (or the horizon if the re‐
788ceiver is over
789 the horizon).
790
791 To compute how much more signal is available over the min‐
792imum to neces‐
793 sary to achieve a specific signal‐to‐noise ratio:
794
795 _S_i_g_n_a_l__M_a_r_g_i_n=_S_N_R‐_S
796
797 where SS is the minimum required SNR ratio (15.5 dB for
798ATSC (8‐level
799 VSB) DTV, 42 dB for analog NTSC television).
800
801 A topographic map may be generated by SSPPLLAATT!! to visu‐
802alize the path
803 between the transmitter and receiver sites from yet an‐
804other perspec‐
805 tive. Topographic maps generated by SSPPLLAATT!! display ele‐
806vations using a
807 logarithmic grayscale, with higher elevations repre‐
808sented through
809 brighter shades of gray. The dynamic range of the
810image is scaled
811 between the highest and lowest elevations present in the
812map. The only
813 exception to this is sea‐level, which is represented
814using the color
815 blue.
816
817 Topographic output is invoked using the _‐_o switch:
818
819 splat ‐t tx_site ‐r rx_site ‐o topo_map.ppm
820
821 The _._p_p_m extension on the output filename is assumed by
822SSPPLLAATT!!, and is
823 optional.
824
825 In this example, _t_o_p_o___m_a_p_._p_p_m will illustrate the lo‐
826cations of the
827 transmitter and receiver sites specified. In addition,
828the great cir‐
829 cle path between the two sites will be drawn over loca‐
830tions for which
831 an unobstructed path exists to the transmitter at a re‐
832ceiving antenna
833 height equal to that of the receiver site (specified in
834_r_x___s_i_t_e_._q_t_h).
835
836 It may desirable to populate the topographic map with
837names and loca‐
838 tions of cities, tower sites, or other important loca‐
839tions. A city
840 file may be passed to SSPPLLAATT!! using the _‐_s switch:
841
842 splat ‐t tx_site ‐r rx_site ‐s cities.dat ‐o topo_map
843
844 Up to five separate city files may be passed to SSPPLLAATT!!
845at a time fol‐
846 lowing the _‐_s switch.
847
848 County and state boundaries may be added to the map by
849specifying up to
850 five U.S. Census Bureau cartographic boundary files
851using the _‐_b
852 switch:
853
854 splat ‐t tx_site ‐r rx_site ‐b co34_d00.dat ‐o topo_map
855
856 In situations where multiple transmitter sites are in use,
857as many as
858 four site locations may be passed to SSPPLLAATT!! at a time for
859analysis:
860
861 splat ‐t tx_site1 tx_site2 tx_site3 tx_site4 ‐r rx_site ‐p
862profile.png
863
864 In this example, four separate terrain profiles and ob‐
865struction reports
866 will be generated by SSPPLLAATT!!. A single topographic map can
867be specified
868 using the _‐_o switch, and line‐of‐sight paths between
869each transmitter
870 and the receiver site indicated will be produced on the
871map, each in
872 its own color. The path between the first transmitter
873specified to the
874 receiver will be in green, the path between the second
875transmitter and
876 the receiver will be in cyan, the path between the
877third transmitter
878 and the receiver will be in violet, and the path between
879the fourth
880 transmitter and the receiver will be in sienna.
881
882 SSPPLLAATT!! generated topographic maps are 24‐bit TrueColor
883Portable PixMap
884 (PPM) images. They may be viewed, edited, or con‐
885verted to other
886 graphic formats by popular image viewing applications
887such as xxvv, TThhee
888 GGIIMMPP, IImmaaggeeMMaaggiicckk, and XXPPaaiinntt. PNG format is highly
889recommended for
890 lossless compressed storage of SSPPLLAATT!! generated topo‐
891graphic output
892 files. IImmaaggeeMMaaggiicckk’s command‐line utility easily converts
893SSPPLLAATT!!’s PPM
894 files to PNG format:
895
896 convert splat_map.ppm splat_map.png
897
898 Another excellent PPM to PNG command‐line utility is
899available at:
900 _h_t_t_p_:_/_/_w_w_w_._l_i_b_p_n_g_._o_r_g_/_p_u_b_/_p_n_g_/_b_o_o_k_/_s_o_u_r_c_e_s_._h_t_m_l. As a
901last resort, PPM
902 files may be compressed using the bzip2 utility, and
903read directly by
904 TThhee GGIIMMPP in this format.
905
906 The _‐_n_g_s option assigns all terrain to the color white,
907and can be used
908 when it is desirable to generate a map that is devoid of
909terrain:
910
911 splat ‐t tx_site ‐r rx_site ‐b co34_d00.dat ‐ngs ‐o
912white_map
913
914 The resulting .ppm image file can be converted to .png
915format with a
916 transparent background using IImmaaggeeMMaaggiicckk’s ccoonnvveerrtt utili‐
917ty:
918
919 convert ‐transparent "#FFFFFF" white_map.ppm transpar‐
920ent_map.png
921
922RREEGGIIOONNAALL CCOOVVEERRAAGGEE AANNAALLYYSSIISS
923 SSPPLLAATT!! can analyze a transmitter or repeater site, or net‐
924work of sites,
925 and predict the regional coverage for each site speci‐
926fied. In this
927 mode, SSPPLLAATT!! can generate a topographic map displaying
928the geometric
929 line‐of‐sight coverage area of the sites based on the lo‐
930cation of each
931 site and the height of receive antenna wishing to communi‐
932cate with the
933 site in question. A regional analysis may be performed by
934SSPPLLAATT!! using
935 the _‐_c switch as follows:
936
937 splat ‐t tx_site ‐c 30.0 ‐s cities.dat ‐b co34_d00.dat ‐o
938tx_coverage
939
940 In this example, SSPPLLAATT!! generates a topographic map
941called _t_x___c_o_v_e_r_‐
942 _a_g_e_._p_p_m that illustrates the predicted line‐of‐sight re‐
943gional coverage
944 of _t_x___s_i_t_e to receiving locations having antennas 30.0
945feet above
946 ground level (AGL). If the _‐_m_e_t_r_i_c switch is used, the
947argument fol‐
948 lowing the _‐_c switch is interpreted as being in meters
949rather than in
950 feet. The contents of _c_i_t_i_e_s_._d_a_t are plotted on the
951map, as are the
952 cartographic boundaries contained in the file
953_c_o_3_4___d_0_0_._d_a_t.
954
955 When plotting line‐of‐sight paths and areas of re‐
956gional coverage,
957 SSPPLLAATT!! by default does not account for the effects of at‐
958mospheric bend‐
959 ing. However, this behavior may be modified by using the
960Earth radius
961 multiplier (_‐_m) switch:
962
963 splat ‐t wnjt‐dt ‐c 30.0 ‐m 1.333 ‐s cities.dat ‐b
964counties.dat ‐o
965 map.ppm
966
967 An earth radius multiplier of 1.333 instructs SSPPLLAATT!! to
968use the "four‐
969 thirds earth" model for line‐of‐sight propagation analy‐
970sis. Any appro‐
971 priate earth radius multiplier may be selected by the us‐
972er.
973
974 When performing a regional analysis, SSPPLLAATT!! generates a
975site report for
976 each station analyzed. SSPPLLAATT!! site reports contain
977details of the
978 site’s geographic location, its height above mean sea
979level, the
980 antenna’s height above mean sea level, the antenna’s
981height above aver‐
982 age terrain, and the height of the average terrain cal‐
983culated toward
984 the bearings of 0, 45, 90, 135, 180, 225, 270, and 315 de‐
985grees azimuth.
986
987DDEETTEERRMMIINNIINNGG MMUULLTTIIPPLLEE RREEGGIIOONNSS OOFF LLOOSS CCOOVVEERRAAGGEE
988 SSPPLLAATT!! can also display line‐of‐sight coverage areas for
989as many as
990 four separate transmitter sites on a common topographic
991map. For exam‐
992 ple:
993
994 splat ‐t site1 site2 site3 site4 ‐c 10.0 ‐metric ‐o net‐
995work.ppm
996
997 plots the regional line‐of‐sight coverage of site1, site2,
998site3, and
999 site4 based on a receive antenna located 10.0 meters
1000above ground
1001 level. A topographic map is then written to the file
1002_n_e_t_w_o_r_k_._p_p_m. The
1003 line‐of‐sight coverage area of the transmitters are plot‐
1004ted as follows
1005 in the colors indicated (along with their corresponding
1006RGB values in
1007 decimal):
1008
1009 site1: Green (0,255,0)
1010 site2: Cyan (0,255,255)
1011 site3: Medium Violet (147,112,219)
1012 site4: Sienna 1 (255,130,71)
1013
1014 site1 + site2: Yellow (255,255,0)
1015 site1 + site3: Pink (255,192,203)
1016 site1 + site4: Green Yellow (173,255,47)
1017 site2 + site3: Orange (255,165,0)
1018 site2 + site4: Dark Sea Green 1 (193,255,193)
1019 site3 + site4: Dark Turquoise (0,206,209)
1020
1021 site1 + site2 + site3: Dark Green (0,100,0)
1022 site1 + site2 + site4: Blanched Almond (255,235,205)
1023 site1 + site3 + site4: Medium Spring Green (0,250,154)
1024 site2 + site3 + site4: Tan (210,180,140)
1025
1026 site1 + site2 + site3 + site4: Gold2 (238,201,0)
1027
1028 If separate _._q_t_h files are generated, each representing
1029a common site
1030 location but a different antenna height, a single to‐
1031pographic map
1032 illustrating the regional coverage from as many as four
1033separate loca‐
1034 tions on a single tower may be generated by SSPPLLAATT!!.
1035
1036PPAATTHH LLOOSSSS AANNAALLYYSSIISS
1037 If the _‐_c switch is replaced by a _‐_L switch, a Longley‐
1038Rice path loss
1039 map for a transmitter site may be generated:
1040
1041 splat ‐t wnjt ‐L 30.0 ‐s cities.dat ‐b co34_d00.dat ‐o
1042path_loss_map
1043
1044 In this mode, SSPPLLAATT!! generates a multi‐color map illus‐
1045trating expected
1046 signal levels in areas surrounding the transmitter site.
1047A legend at
1048 the bottom of the map correlates each color with a spe‐
1049cific path loss
1050 range in decibels.
1051
1052 The _‐_d_b switch allows a threshold to be set beyond which
1053contours will
1054 not be plotted on the map. For example, if a path loss
1055beyond ‐140 dB
1056 is irrelevant to the survey being conducted, SSPPLLAATT!!’s
1057path loss plot
1058 can be constrained to the region bounded by the 140 dB at‐
1059tenuation con‐
1060 tour as follows:
1061
1062 splat ‐t wnjt‐dt ‐L 30.0 ‐s cities.dat ‐b co34_d00.dat
1063‐db 140 ‐o
1064 plot.ppm
1065
1066 The path loss contour threshold may be expressed as ei‐
1067ther a positive
1068 or negative quantity.
1069
1070 The path loss analysis range may be modified to a user‐
1071specific dis‐
1072 tance using the _‐_R switch. The argument must be given
1073in miles (or
1074 kilometers if the _‐_m_e_t_r_i_c switch is used). If a range
1075wider than the
1076 generated topographic map is specified, SSPPLLAATT!! will
1077perform Longley‐
1078 Rice path loss calculations between all four corners of
1079the area pre‐
1080 diction map.
1081
1082 The colors used to illustrate contour regions in SSPPLLAATT!!
1083generated cov‐
1084 erage maps may be tailored by the user by creating
1085or modifying
1086 SSPPLLAATT!!’s color definition files. SSPPLLAATT!! color defini‐
1087tion files have
1088 the same base name as the transmitter’s _._q_t_h file, but
1089carry _._l_c_f,
1090 _._s_c_f, and _._d_c_f extensions. If the necessary file does not
1091exist in the
1092 current working when SSPPLLAATT!! is run, a file containing
1093default color
1094 definition parameters that is suitable for manual edit‐
1095ing by the user
1096 is written into the current directory.
1097
1098 When a regional Longley‐Rice analysis is performed and
1099the transmit‐
1100 ter’s ERP is not specified or is zero, a _._l_c_f path loss
1101color defini‐
1102 tion file corresponding to the transmitter site (_._q_t_h)
1103is read by
1104 SSPPLLAATT!! from the current working directory. If a _._l_c_f
1105file correspond‐
1106 ing to the transmitter site is not found, then a default
1107file suitable
1108 for manual editing by the user is automatically generated
1109by SSPPLLAATT!!.
1110
1111 A path loss color definition file possesses the fol‐
1112lowing structure
1113 (_w_n_j_t_‐_d_t_._l_c_f):
1114
1115 ; SPLAT! Auto‐generated Path‐Loss Color Definition
1116("wnjt‐dt.lcf")
1117 File
1118 ;
1119 ; Format for the parameters held in this file is as fol‐
1120lows:
1121 ;
1122 ; dB: red, green, blue
1123 ;
1124 ; ...where "dB" is the path loss (in dB) and
1125 ; "red", "green", and "blue" are the corresponding RGB
1126color
1127 ; definitions ranging from 0 to 255 for the region speci‐
1128fied.
1129 ;
1130 ; The following parameters may be edited and/or expanded
1131 ; for future runs of SPLAT! A total of 32 contour re‐
1132gions
1133 ; may be defined in this file.
1134 ;
1135 ;
1136 80: 255, 0, 0
1137 90: 255, 128, 0
1138 100: 255, 165, 0
1139 110: 255, 206, 0
1140 120: 255, 255, 0
1141 130: 184, 255, 0
1142 140: 0, 255, 0
1143 150: 0, 208, 0
1144 160: 0, 196, 196
1145 170: 0, 148, 255
1146 180: 80, 80, 255
1147 190: 0, 38, 255
1148 200: 142, 63, 255
1149 210: 196, 54, 255
1150 220: 255, 0, 255
1151 230: 255, 194, 204
1152
1153 If the path loss is less than 80 dB, the color Red (RGB =
1154255, 0, 0) is
1155 assigned to the region. If the path loss is greater than
1156or equal to
1157 80 dB, but less than 90 db, then Dark Orange (255, 128,
11580) is assigned
1159 to the region. Orange (255, 165, 0) is assigned to re‐
1160gions having a
1161 path loss greater than or equal to 90 dB, but less than
1162100 dB, and so
1163 on. Greyscale terrain is displayed beyond the 230 dB
1164path loss con‐
1165 tour.
1166
1167FFIIEELLDD SSTTRREENNGGTTHH AANNAALLYYSSIISS
1168 If the transmitter’s effective radiated power (ERP) is
1169specified in the
1170 transmitter’s _._l_r_p file, or expressed on the command‐
1171line using the
1172 _‐_e_r_p switch, field strength contours referenced to
1173decibels over one
1174 microvolt per meter (dBuV/m) rather than path loss are
1175produced:
1176
1177 splat ‐t wnjt‐dt ‐L 30.0 ‐erp 46000 ‐db 30 ‐o plot.ppm
1178
1179 The _‐_d_b switch can be used in this mode as before to limit
1180the extent
1181 to which field strength contours are plotted. When
1182plotting field
1183 strength contours, however, the argument given is inter‐
1184preted as being
1185 expressed in dBuV/m.
1186
1187 SSPPLLAATT!! field strength color definition files share a
1188very similar
1189 structure to _._l_c_f files used for plotting path loss:
1190
1191 ; SPLAT! Auto‐generated Signal Color Definition ("wnjt‐
1192dt.scf") File
1193 ;
1194 ; Format for the parameters held in this file is as fol‐
1195lows:
1196 ;
1197 ; dBuV/m: red, green, blue
1198 ;
1199 ; ...where "dBuV/m" is the signal strength (in dBuV/m)
1200and
1201 ; "red", "green", and "blue" are the corresponding RGB
1202color
1203 ; definitions ranging from 0 to 255 for the region speci‐
1204fied.
1205 ;
1206 ; The following parameters may be edited and/or expanded
1207 ; for future runs of SPLAT! A total of 32 contour re‐
1208gions
1209 ; may be defined in this file.
1210 ;
1211 ;
1212 128: 255, 0, 0
1213 118: 255, 165, 0
1214 108: 255, 206, 0
1215 98: 255, 255, 0
1216 88: 184, 255, 0
1217 78: 0, 255, 0
1218 68: 0, 208, 0
1219 58: 0, 196, 196
1220 48: 0, 148, 255
1221 38: 80, 80, 255
1222 28: 0, 38, 255
1223 18: 142, 63, 255
1224 8: 140, 0, 128
1225
1226 If the signal strength is greater than or equal to 128 dB
1227over 1 micro‐
1228 volt per meter (dBuV/m), the color Red (255, 0, 0) is dis‐
1229played for the
1230 region. If the signal strength is greater than or equal
1231to 118 dBuV/m,
1232 but less than 128 dBuV/m, then the color Orange (255,
1233165, 0) is dis‐
1234 played, and so on. Greyscale terrain is displayed for
1235regions with
1236 signal strengths less than 8 dBuV/m.
1237
1238 Signal strength contours for some common VHF and UHF
1239broadcasting ser‐
1240 vices in the United States are as follows:
1241
1242
1243
1244
1245 Analog Television Broadcasting
1246 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1247 Channels 2‐6: City Grade: >= 74 dBuV/m
1248 Grade A: >= 68 dBuV/m
1249 Grade B: >= 47 dBuV/m
1250 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1251 Channels 7‐13: City Grade: >= 77 dBuV/m
1252 Grade A: >= 71 dBuV/m
1253 Grade B: >= 56 dBuV/m
1254 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1255 Channels 14‐69: Indoor Grade: >= 94 dBuV/m
1256 City Grade: >= 80 dBuV/m
1257 Grade A: >= 74 dBuV/m
1258 Grade B: >= 64 dBuV/m
1259
1260 Digital Television Broadcasting
1261 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1262 Channels 2‐6: City Grade: >= 35 dBuV/m
1263 Service Threshold: >= 28 dBuV/m
1264 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1265 Channels 7‐13: City Grade: >= 43 dBuV/m
1266 Service Threshold: >= 36 dBuV/m
1267 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1268 Channels 14‐69: City Grade: >= 48 dBuV/m
1269 Service Threshold: >= 41 dBuV/m
1270
1271 NOAA Weather Radio (162.400 ‐ 162.550 MHz)
1272 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1273 Reliable: >= 18 dBuV/m
1274 Not reliable: < 18 dBuV/m
1275 Unlikely to receive: < 0 dBuV/m
1276
1277 FM Radio Broadcasting (88.1 ‐ 107.9 MHz)
1278 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1279 Analog Service Contour: 60 dBuV/m
1280 Digital Service Contour: 65 dBuV/m
1281
1282
1283RREECCEEIIVVEEDD PPOOWWEERR LLEEVVEELL AANNAALLYYSSIISS
1284 If the transmitter’s effective radiated power (ERP) is
1285specified in the
1286 transmitter’s _._l_r_p file, or expressed on the command‐
1287line using the
1288 _‐_e_r_p switch, and the _‐_d_b_m switch is invoked, received pow‐
1289er level con‐
1290 tours referenced to decibels over one milliwatt (dBm) are
1291produced:
1292
1293 splat ‐t wnjt‐dt ‐L 30.0 ‐erp 46000 ‐dbm ‐db ‐100 ‐o
1294plot.ppm
1295
1296 The _‐_d_b switch can be used to limit the extent to which
1297received power
1298 level contours are plotted. When plotting power level
1299contours, the
1300 argument given is interpreted as being expressed in dBm.
1301
1302 SSPPLLAATT!! received power level color definition files share a
1303very similar
1304 structure to the color definition files described earlier,
1305except that
1306 the power levels in dBm may be either positive or neg‐
1307ative, and are
1308 limited to a range between +40 dBm and ‐200 dBm:
1309
1310 ; SPLAT! Auto‐generated DBM Signal Level Color Defi‐
1311nition ("wnjt‐
1312 dt.dcf") File
1313 ;
1314 ; Format for the parameters held in this file is as fol‐
1315lows:
1316 ;
1317 ; dBm: red, green, blue
1318 ;
1319 ; ...where "dBm" is the received signal power level be‐
1320tween +40 dBm
1321 ; and ‐200 dBm, and "red", "green", and "blue" are the
1322corresponding
1323 ; RGB color definitions ranging from 0 to 255 for the
1324region speci‐
1325 fied.
1326 ;
1327 ; The following parameters may be edited and/or expanded
1328 ; for future runs of SPLAT! A total of 32 contour re‐
1329gions
1330 ; may be defined in this file.
1331 ;
1332 ;
1333 +0: 255, 0, 0
1334 ‐10: 255, 128, 0
1335 ‐20: 255, 165, 0
1336 ‐30: 255, 206, 0
1337 ‐40: 255, 255, 0
1338 ‐50: 184, 255, 0
1339 ‐60: 0, 255, 0
1340 ‐70: 0, 208, 0
1341 ‐80: 0, 196, 196
1342 ‐90: 0, 148, 255
1343 ‐100: 80, 80, 255
1344 ‐110: 0, 38, 255
1345 ‐120: 142, 63, 255
1346 ‐130: 196, 54, 255
1347 ‐140: 255, 0, 255
1348 ‐150: 255, 194, 204
1349
1350
1351AANNTTEENNNNAA RRAADDIIAATTIIOONN PPAATTTTEERRNN PPAARRAAMMEETTEERRSS
1352 Normalized field voltage patterns for a transmitting an‐
1353tenna’s horizon‐
1354 tal and vertical planes are imported automatically into
1355SSPPLLAATT!! when a
1356 path loss, field strength, or received power level cover‐
1357age analysis is
1358 performed. Antenna pattern data is read from a pair of
1359files having
1360 the same base name as the transmitter and LRP files, but
1361with _._a_z and
1362 _._e_l extensions for azimuth and elevation pattern files,
1363respectively.
1364 Specifications regarding pattern rotation (if any) and me‐
1365chanical beam
1366 tilt and tilt direction (if any) are also contained
1367within SSPPLLAATT!!
1368 antenna pattern files.
1369
1370 For example, the first few lines of a SSPPLLAATT!! azimuth pat‐
1371tern file might
1372 appear as follows (_k_v_e_a_._a_z):
1373
1374 183.0
1375 0 0.8950590
1376 1 0.8966406
1377 2 0.8981447
1378 3 0.8995795
1379 4 0.9009535
1380 5 0.9022749
1381 6 0.9035517
1382 7 0.9047923
1383 8 0.9060051
1384
1385 The first line of the _._a_z file specifies the amount of
1386azimuthal pat‐
1387 tern rotation (measured clockwise in degrees from True
1388North) to be
1389 applied by SSPPLLAATT!! to the data contained in the _._a_z file.
1390This is fol‐
1391 lowed by azimuth headings (0 to 360 degrees) and their as‐
1392sociated nor‐
1393 malized field patterns (0.000 to 1.000) separated by
1394whitespace.
1395
1396 The structure of SSPPLLAATT!! elevation pattern files is
1397slightly different.
1398 The first line of the _._e_l file specifies the amount of me‐
1399chanical beam
1400 tilt applied to the antenna. Note that a _d_o_w_n_w_a_r_d
1401_t_i_l_t (below the
1402 horizon) is expressed as a _p_o_s_i_t_i_v_e _a_n_g_l_e, while an _u_p_w_a_r_d
1403_t_i_l_t (above
1404 the horizon) is expressed as a _n_e_g_a_t_i_v_e _a_n_g_l_e. This da‐
1405ta is followed
1406 by the azimuthal direction of the tilt, separated by
1407whitespace.
1408
1409 The remainder of the file consists of elevation angles and
1410their corre‐
1411 sponding normalized voltage radiation pattern (0.000 to
14121.000) values
1413 separated by whitespace. Elevation angles must be spec‐
1414ified over a
1415 ‐10.0 to +90.0 degree range. As was the convention
1416with mechanical
1417 beamtilt, _n_e_g_a_t_i_v_e _e_l_e_v_a_t_i_o_n _a_n_g_l_e_s are used to repre‐
1418sent elevations
1419 _a_b_o_v_e _t_h_e _h_o_r_i_z_o_n, while _p_o_s_i_t_i_v_e _a_n_g_l_e_s represents el‐
1420evations _b_e_l_o_w
1421 _t_h_e _h_o_r_i_z_o_n.
1422
1423 For example, the first few lines a SSPPLLAATT!! elevation pat‐
1424tern file might
1425 appear as follows (_k_v_e_a_._e_l):
1426
1427 1.1 130.0
1428 ‐10.0 0.172
1429 ‐9.5 0.109
1430 ‐9.0 0.115
1431 ‐8.5 0.155
1432 ‐8.0 0.157
1433 ‐7.5 0.104
1434 ‐7.0 0.029
1435 ‐6.5 0.109
1436 ‐6.0 0.185
1437
1438 In this example, the antenna is mechanically tilted
1439downward 1.1
1440 degrees towards an azimuth of 130.0 degrees.
1441
1442 For best results, the resolution of azimuth pattern da‐
1443ta should be
1444 specified to the nearest degree azimuth, and elevation
1445pattern data
1446 resolution should be specified to the nearest 0.01 de‐
1447grees. If the
1448 pattern data specified does not reach this level of reso‐
1449lution, SSPPLLAATT!!
1450 will interpolate the values provided to determine the
1451data at the
1452 required resolution, although this may result in a loss in
1453accuracy.
1454
1455EEXXPPOORRTTIINNGG AANNDD IIMMPPOORRTTIINNGG RREEGGIIOONNAALL CCOONNTTOOUURR DDAATTAA
1456 Performing a regional coverage analysis based on a Lon‐
1457gley‐Rice path
1458 analysis can be a very time consuming process, especially
1459if the analy‐
1460 sis is performed repeatedly to discover what effects
1461changes to a
1462 transmitter’s antenna radiation pattern make to the pre‐
1463dicted coverage
1464 area.
1465
1466 This process can be expedited by exporting the contour da‐
1467ta produced by
1468 SSPPLLAATT!! to an alphanumeric output _(_._a_n_o_) file. The data
1469contained in
1470 this file can then be modified to incorporate antenna
1471pattern effects,
1472 and imported back into SSPPLLAATT!! to quickly produce a revised
1473contour map.
1474 Depending on the way in which SSPPLLAATT!! is invoked, al‐
1475phanumeric output
1476 files can describe regional path loss, signal strength,
1477or received
1478 signal power levels.
1479
1480 For example, an alphanumeric output file containing path
1481loss informa‐
1482 tion can be generated by SSPPLLAATT!! for a receive site 30 feet
1483above ground
1484 level over a 50 mile radius surrounding a transmitter site
1485to a maximum
1486 path loss of 140 dB (assuming ERP is not specified in the
1487transmitter’s
1488 _._l_r_p file) using the following syntax:
1489
1490 splat ‐t kvea ‐L 30.0 ‐R 50.0 ‐db 140 ‐ano pathloss.dat
1491
1492 If ERP is specified in the _._l_r_p file or on the command
1493line through the
1494 _‐_e_r_p switch, the alphanumeric output file will instead
1495contain pre‐
1496 dicted field values in dBuV/m. If the _‐_d_B_m command
1497line switch is
1498 used, then the alphanumeric output file will contain
1499receive signal
1500 power levels in dBm.
1501
1502 SSPPLLAATT!! alphanumeric output files can exceed many hundreds
1503of megabytes
1504 in size. They contain information relating to the bound‐
1505aries of the
1506 region they describe followed by latitudes (degrees
1507North), longitudes
1508 (degrees West), azimuths (referenced to True North), ele‐
1509vations (to the
1510 first obstruction), followed by either path loss (in
1511dB), received
1512 field strength (in dBuV/m), or received signal power
1513level (in dBm)
1514 wwiitthhoouutt rreeggaarrdd ttoo tthhee ttrraannssmmiittttiinngg aanntteennnnaa’’ss rraaddiiaattiioonn
1515ppaatttteerrnn.
1516
1517 The first few lines of a SSPPLLAATT!! alphanumeric output file
1518could take on
1519 the following appearance (_p_a_t_h_l_o_s_s_._d_a_t):
1520
1521 119, 117 ; max_west, min_west
1522 35, 34 ; max_north, min_north
1523 34.2265424, 118.0631096, 48.199, ‐32.747, 67.70
1524 34.2270358, 118.0624421, 48.199, ‐19.161, 73.72
1525 34.2275292, 118.0617747, 48.199, ‐13.714, 77.24
1526 34.2280226, 118.0611072, 48.199, ‐10.508, 79.74
1527 34.2290094, 118.0597723, 48.199, ‐11.806, 83.26 *
1528 34.2295028, 118.0591048, 48.199, ‐11.806, 135.47 *
1529 34.2299962, 118.0584373, 48.199, ‐15.358, 137.06 *
1530 34.2304896, 118.0577698, 48.199, ‐15.358, 149.87 *
1531 34.2314763, 118.0564348, 48.199, ‐15.358, 154.16 *
1532 34.2319697, 118.0557673, 48.199, ‐11.806, 153.42 *
1533 34.2324631, 118.0550997, 48.199, ‐11.806, 137.63 *
1534 34.2329564, 118.0544322, 48.199, ‐11.806, 139.23 *
1535 34.2339432, 118.0530971, 48.199, ‐11.806, 139.75 *
1536 34.2344365, 118.0524295, 48.199, ‐11.806, 151.01 *
1537 34.2349299, 118.0517620, 48.199, ‐11.806, 147.71 *
1538 34.2354232, 118.0510944, 48.199, ‐15.358, 159.49 *
1539 34.2364099, 118.0497592, 48.199, ‐15.358, 151.67 *
1540
1541 Comments can be placed in the file if they are proceeded
1542by a semicolon
1543 character. The vviimm text editor has proven capable of
1544editing files of
1545 this size.
1546
1547 Note as was the case in the antenna pattern files, nega‐
1548tive elevation
1549 angles refer to upward tilt (above the horizon), while
1550positive angles
1551 refer to downward tilt (below the horizon). These angles
1552refer to the
1553 elevation to the receiving antenna at the height above
1554ground level
1555 specified using the _‐_L switch _i_f the path between
1556transmitter and
1557 receiver is unobstructed. If the path between the
1558transmitter and
1559 receiver is obstructed, an asterisk (*) is placed on the
1560end of the
1561 line, and the elevation angle returned by SSPPLLAATT!! refers
1562the elevation
1563 angle to the first obstruction rather than the geo‐
1564graphic location
1565 specified on the line. This is done in response to the
1566fact that the
1567 Longley‐Rice model considers the energy reaching a distant
1568point over
1569 an obstructed path to be the result of the energy scat‐
1570tered over the
1571 top of the first obstruction along the path. Since energy
1572cannot reach
1573 the obstructed location directly, the actual elevation
1574angle to the
1575 destination over such a path becomes irrelevant.
1576
1577 When modifying SSPPLLAATT!! path loss files to reflect antenna
1578pattern data,
1579 _o_n_l_y _t_h_e _l_a_s_t _n_u_m_e_r_i_c _c_o_l_u_m_n should be amended to reflect
1580the antenna’s
1581 normalized gain at the azimuth and elevation angles spec‐
1582ified in the
1583 file. Programs and scripts capable of performing this
1584task are left as
1585 an exercise for the user.
1586
1587 Modified alphanumeric output files can be imported back
1588into SSPPLLAATT!!
1589 for generating revised coverage maps provided that the
1590ERP and ‐dBm
1591 options are used as they were when the alphanumeric out‐
1592put file was
1593 originally generated:
1594
1595 splat ‐t kvea ‐ani pathloss.dat ‐s city.dat ‐b county.dat
1596‐o map.ppm
1597
1598 Note that alphanumeric output files generated by splat
1599cannot be used
1600 with splat‐hd, or vice‐versa due to the resolution
1601incompatibility
1602 between the two versions of the program. Also, each of
1603the three types
1604 of alphanumeric output files are incompatible with one
1605another, so a
1606 file containing path loss data cannot be imported into
1607SSPPLLAATT!! to pro‐
1608 duce signal strength or received power level contours,
1609etc.
1610
1611UUSSEERR‐‐DDEEFFIINNEEDD TTEERRRRAAIINN IINNPPUUTT FFIILLEESS
1612 A user‐defined terrain file is a user‐generated text
1613file containing
1614 latitudes, longitudes, and heights above ground level of
1615specific ter‐
1616 rain features believed to be of importance to the SSPPLLAATT!!
1617analysis being
1618 conducted, but noticeably absent from the SDF files
1619being used. A
1620 user‐defined terrain file is imported into a SSPPLLAATT!! analy‐
1621sis using the
1622 _‐_u_d_t switch:
1623
1624 splat ‐t tx_site ‐r rx_site ‐udt udt_file.txt ‐o map.ppm
1625
1626 A user‐defined terrain file has the following appearance
1627and structure:
1628
1629 40.32180556, 74.1325, 100.0 meters
1630 40.321805, 74.1315, 300.0
1631 40.3218055, 74.1305, 100.0 meters
1632
1633 Terrain height is interpreted as being described in feet
1634above ground
1635 level unless followed by the word _m_e_t_e_r_s, and is added
1636_o_n _t_o_p _o_f the
1637 terrain specified in the SDF data for the locations
1638specified. Be
1639 aware that each user‐defined terrain feature specified
1640will be inter‐
1641 preted as being 3‐arc seconds in both latitude and longi‐
1642tude in splat
1643 and 1 arc‐second in latitude and longitude in splat‐
1644hd. Features
1645 described in the user‐defined terrain file that over‐
1646lap previously
1647 defined features in the file are ignored by SSPPLLAATT!! to
1648avoid ambiguity.
1649
1650GGRROOUUNNDD CCLLUUTTTTEERR
1651 The height of ground clutter can be specified using the
1652_‐_g_c switch:
1653
1654 splat ‐t wnjt‐dt ‐r kd2bd ‐gc 30.0 ‐H wnjt‐
1655dt_path.png
1656
1657 The _‐_g_c switch as the effect of raising the overall
1658terrain by the
1659 specified amount in feet (or meters if the _‐_m_e_t_r_i_c switch
1660is invoked),
1661 except over areas at sea‐level and at the transmitting
1662and receiving
1663 antenna locations. Note that the addition of ground
1664clutter does not
1665 necessarily modify the Longley‐Rice path loss results un‐
1666less the addi‐
1667 tional clutter height results in a switch in the propaga‐
1668tion mode from
1669 a less obstructed path to a more obstructed path (from
1670Line Of Sight to
1671 Single Horizon Diffraction Dominant, for example). It
1672does, however,
1673 affect Fresnel zone clearances and line of sight determi‐
1674nations.
1675
1676SSIIMMPPLLEE TTOOPPOOGGRRAAPPHHIICC MMAAPP GGEENNEERRAATTIIOONN
1677 In certain situations it may be desirable to generate a
1678topographic map
1679 of a region without plotting coverage areas, line‐of‐
1680sight paths, or
1681 generating obstruction reports. There are several ways of
1682doing this.
1683 If one wishes to generate a topographic map illustrating
1684the location
1685 of a transmitter and receiver site along with a brief
1686text report
1687 describing the locations and distances between the sites,
1688the _‐_n switch
1689 should be invoked as follows:
1690
1691 splat ‐t tx_site ‐r rx_site ‐n ‐o topo_map.ppm
1692
1693 If no text report is desired, then the _‐_N switch is used:
1694
1695 splat ‐t tx_site ‐r rx_site ‐N ‐o topo_map.ppm
1696
1697 If a topographic map centered about a single site out
1698to a minimum
1699 specified radius is desired instead, a command similar to
1700the following
1701 can be used:
1702
1703 splat ‐t tx_site ‐R 50.0 ‐s NJ_Cities ‐b NJ_Counties ‐o
1704topo_map.ppm
1705
1706 where ‐R specifies the minimum radius of the map in miles
1707(or kilome‐
1708 ters if the _‐_m_e_t_r_i_c switch is used). Note that the
1709tx_site name and
1710 location are not displayed in this example. If display of
1711this infor‐
1712 mation is desired, simply create a SSPPLLAATT!! city file
1713(_‐_s option) and
1714 append it to the list of command‐line options illustrated
1715above.
1716
1717 If the _‐_o switch and output filename are omitted in these
1718operations,
1719 topographic output is written to a file named
1720_t_x___s_i_t_e_._p_p_m in the cur‐
1721 rent working directory by default.
1722
1723GGEEOORREEFFEERREENNCCEE FFIILLEE GGEENNEERRAATTIIOONN
1724 Topographic, coverage (_‐_c), and path loss contour (_‐_L)
1725maps generated
1726 by SSPPLLAATT!! may be imported into XXaassttiirr (X Amateur Station
1727Tracking and
1728 Information Reporting) software by generating a georefer‐
1729ence file using
1730 SSPPLLAATT!!’s _‐_g_e_o switch:
1731
1732 splat ‐t kd2bd ‐R 50.0 ‐s NJ_Cities ‐b NJ_Counties ‐geo ‐o
1733map.ppm
1734
1735 The georeference file generated will have the same base
1736name as the _‐_o
1737 file specified, but have a _._g_e_o extension, and permit
1738proper interpre‐
1739 tation and display of SSPPLLAATT!!’s .ppm graphics in XXaassttiirr
1740software.
1741
1742GGOOOOGGLLEE MMAAPP KKMMLL FFIILLEE GGEENNEERRAATTIIOONN
1743 Keyhole Markup Language files compatible with GGooooggllee
1744EEaarrtthh may be gen‐
1745 erated by SSPPLLAATT!! when performing point‐to‐point or re‐
1746gional coverage
1747 analyses by invoking the _‐_k_m_l switch:
1748
1749 splat ‐t wnjt‐dt ‐r kd2bd ‐kml
1750
1751 The KML file generated will have the same filename struc‐
1752ture as a Path
1753 Analysis Report for the transmitter and receiver site
1754names given,
1755 except it will carry a _._k_m_l extension.
1756
1757 Once loaded into GGooooggllee EEaarrtthh (File ‐‐> Open), the KML
1758file will anno‐
1759 tate the map display with the names of the transmitter
1760and receiver
1761 site locations. The viewpoint of the image will be from
1762the position
1763 of the transmitter site looking towards the location of
1764the receiver.
1765 The point‐to‐point path between the sites will be dis‐
1766played as a white
1767 line while the RF line‐of‐sight path will be dis‐
1768played in green.
1769 GGooooggllee EEaarrtthh’s navigation tools allow the user to
1770"fly" around the
1771 path, identify landmarks, roads, and other featured con‐
1772tent.
1773
1774 When performing regional coverage analysis, the _._k_m_l file
1775generated by
1776 SSPPLLAATT!! will permit path loss or signal strength contours
1777to be layered
1778 on top of GGooooggllee EEaarrtthh’s display in a semi‐transparent
1779manner. The
1780 generated _._k_m_l file will have the same basename as
1781that of the _._p_p_m
1782 file normally generated.
1783
1784DDEETTEERRMMIINNAATTIIOONN OOFF AANNTTEENNNNAA HHEEIIGGHHTT AABBOOVVEE AAVVEERRAAGGEE TTEERRRRAAIINN
1785 SSPPLLAATT!! determines antenna height above average terrain
1786(HAAT) according
1787 to the procedure defined by Federal Communications
1788Commission Part
1789 73.313(d). According to this definition, terrain ele‐
1790vations along
1791 eight radials between 2 and 10 miles (3 and 16 kilome‐
1792ters) from the
1793 site being analyzed are sampled and averaged for each 45
1794degrees of
1795 azimuth starting with True North. If one or more radials
1796lie entirely
1797 over water or over land outside the United States (areas
1798for which no
1799 USGS topography data is available), then those radials are
1800omitted from
1801 the calculation of average terrain.
1802
1803 Note that SRTM‐3 elevation data, unlike older USGS data,
1804extends beyond
1805 the borders of the United States. Therefore, HAAT re‐
1806sults may not be
1807 in full compliance with FCC Part 73.313(d) in areas along
1808the borders
1809 of the United States if the SDF files used by SSPPLLAATT!! are
1810SRTM‐derived.
1811
1812 When performing point‐to‐point terrain analysis, SSPPLLAATT!!
1813determines the
1814 antenna height above average terrain only if enough to‐
1815pographic data
1816 has already been loaded by the program to perform the
1817point‐to‐point
1818 analysis. In most cases, this will be true, unless the
1819site in ques‐
1820 tion does not lie within 10 miles of the boundary of
1821the topography
1822 data in memory.
1823
1824 When performing area prediction analysis, enough to‐
1825pography data is
1826 normally loaded by SSPPLLAATT!! to perform average terrain
1827calculations.
1828 Under such conditions, SSPPLLAATT!! will provide the antenna
1829height above
1830 average terrain as well as the average terrain above mean
1831sea level for
1832 azimuths of 0, 45, 90, 135, 180, 225, 270, and 315 de‐
1833grees, and include
1834 such information in the generated site report. If one or
1835more of the
1836 eight radials surveyed fall over water, or over regions
1837for which no
1838 SDF data is available, SSPPLLAATT!! reports _N_o _T_e_r_r_a_i_n for the
1839radial paths
1840 affected.
1841
1842AADDDDIITTIIOONNAALL IINNFFOORRMMAATTIIOONN
1843 The latest news and information regarding SSPPLLAATT!! software
1844is available
1845 through the official SSPPLLAATT!! software web page
1846located at:
1847 _h_t_t_p_:_/_/_w_w_w_._q_s_l_._n_e_t_/_k_d_2_b_d_/_s_p_l_a_t_._h_t_m_l.
1848
1849AAUUTTHHOORRSS
1850 John A. Magliacane, KD2BD <_k_d_2_b_d_@_a_m_s_a_t_._o_r_g>
1851 Creator, Lead Developer
1852
1853 Doug McDonald <_m_c_d_o_n_a_l_d_@_s_c_s_._u_i_u_c_._e_d_u>
1854 Original Longley‐Rice Model integration
1855
1856 Ron Bentley <_r_o_n_b_e_n_t_l_e_y_@_e_m_b_a_r_q_m_a_i_l_._c_o_m>
1857 Fresnel Zone plotting and clearance determination
1858
1859
1860
1861
1862KD2BD Software 15 November 2008
1863SPLAT!(1)
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914