.TH i.atcorr 1 "" "GRASS 6.3.0" "Grass User's Manual" .SH NAME \fI\fBi.atcorr\fR\fR - 6s - Second Simulation of Satellite Signal in the Solar Spectrum. .SH KEYWORDS .SH SYNOPSIS \fBi.atcorr\fR .br \fBi.atcorr help\fR .br \fBi.atcorr\fR [-\fBfrabo\fR] \fBiimg\fR=\fIname\fR [\fBiscl\fR=\fIInput scale range\fR] [\fBialt\fR=\fIname\fR] [\fBivis\fR=\fIname\fR] \fBicnd\fR=\fIname\fR \fBoimg\fR=\fIname\fR \fBoscl\fR=\fIOutput scale range\fR [--\fBoverwrite\fR] [--\fBverbose\fR] [--\fBquiet\fR] .SS Flags: .IP "\fB-f\fR" 4m .br Output raster is floating point .IP "\fB-r\fR" 4m .br Input map converted to reflectance (default is radiance) .IP "\fB-a\fR" 4m .br Input from ETM+ image taken after July 1, 2000 .IP "\fB-b\fR" 4m .br Input from ETM+ image taken before July 1, 2000 .IP "\fB-o\fR" 4m .br Try to increase computation speed when categorized altitude or/and visibility map is used. .IP "\fB--overwrite\fR" 4m .br Allow output files to overwrite existing files .IP "\fB--verbose\fR" 4m .br Verbose module output .IP "\fB--quiet\fR" 4m .br Quiet module output .PP .SS Parameters: .IP "\fBiimg\fR=\fIname\fR" 4m .br Input imagery map to be corrected .IP "\fBiscl\fR=\fIInput scale range\fR" 4m .br Input imagery range [0,255] .br Default: \fI0,255\fR .IP "\fBialt\fR=\fIname\fR" 4m .br Input altitude map in m (optional) .br Default: \fIdem_float\fR .IP "\fBivis\fR=\fIname\fR" 4m .br Input visibility map in km (optional) .IP "\fBicnd\fR=\fIname\fR" 4m .br 6S input text file .IP "\fBoimg\fR=\fIname\fR" 4m .br 6S output imagery map .IP "\fBoscl\fR=\fIOutput scale range\fR" 4m .br Rescale output imagery map [0,255] .br Default: \fI0,255\fR .PP .SH DESCRIPTION \fBi.atcorr\fR performs atmospheric correction on the input raster using the 6S algorithm (Second Simulation of Satellite Signal in the Solar Spectrum). A detailed algorithm description is available at the Land Surface Reflectance Science Computing Facility website and Mauro A. Homem Antunes website about his 6s version. .PP Current region settings are ignored. The region is adjusted to cover the input raster before the atmospheric correction is performed. This should not affect the user's current region settings. .PP Because using a continuous elevation \fIialt\fR or visibility \fIivis\fR map makes execution time much longer, it is advised to use categorized maps instead, in conjuction with flag \fI-o\fR. This flag tells \fBi.atcorr\fR to try and speedup calculations. However, this option under certain conditions can make execution time longer. .PP If flag \fI-r\fR is used, the input data are treated as reflectance. Otherwise, the input data are treated as radiance values and are converted to reflectance at the \fBi.atcorr\fR runtime. The output data are always reflectance. .PP An example 6s parameters \fIicnd\fR file for \fBi.atcorr\fR: .PP \fC .DS .br 8 - geometrical conditions=Landsat ETM+ .br 2 19 13.00 -47.410 -20.234 - month day hh.ddd longitude lattitude ("hh.ddd" is a decimal hour GMT) .br 1 - atmospheric mode=tropical .br 1 - aerosols model=continental .br 15 - visibility [km] (aerosol model concentration) .br -.600 - target at 600m above sea level .br -1000 - sensor on board a satellite .br 64 - 4th band of ETM+ Landsat 7 .br .DE \fR .SH REMAINING DOCUMENTATION ISSUES 1. Using the target elevation and visibility parameters in the \fIicnd\fR file overrides \fIialt\fR and \fIivis\fR input rasters. It is not clear what to do to force \fBi.atcorr\fR to use the rasters instead though. .PP 2. The "example 6s parameters file" explains that "-.600" in line 6 means \(dqtarget at 600 m ASL". However, in the section E of "6S CODE PARAMETER CHOICES" it reads: "xps <=0. means the target is at the sea level". This is contrary. .PP 3. In section E, I'm not sure if the "-100< xpp <0" shouldn't actually be \(dq-1000< xpp <0". ? .PP 4. It is not explained what is the "iaer" parameter that section D refers to. .PP 5. Section D's "Aerosol model concentration" title could use a better wording I suppose. The current one seems to mean "the concentration of the model of the aerosol". Should it be "Aerosol concentration model"? .PP 6. It should be explained under what circumstances the use of categorized maps in conjuction with flag \fI-o\fR can slow down the calculations instead of speeding them up. .PP 7. "This should not affect the user's current region settings" sounds ambigious. .PP .SH 6S CODE PARAMETER CHOICES .SS A. Geometrical conditions: .br | Code | Description | Details .br | 1 | \fBmeteosat\fR observation | enter month,day,decimal hour (universal time-hh.ddd) .br n. of column,n. of line.(full scale 5000*2500) .br | 2 | \fBgoes east \fRobservation | enter month,day,decimal hour (universal time-hh.ddd) .br n. of column,n. of line.(full scale 17000*12000)c .br | 3 | \fBgoes west\fR observation | enter month,day,decimal hour (universal time-hh.ddd) .br n. of column,n. of line.(full scale 17000*12000) .br | 4 | \fBavhrr\fR (PM noaa) | enter month,day,decimal hour (universal time-hh.ddd) .br n. of column(1-2048),xlonan,hna .br give long.(xlonan) and overpass hour (hna) at .br the ascendant node at equator .br | 5 | \fBavhrr\fR (AM noaa) | enter month,day,decimal hour (universal time-hh.ddd) .br n. of column(1-2048),xlonan,hna .br give long.(xlonan) and overpass hour (hna) at .br the ascendant node at equator .br | 6 | \fBhrv\fR (spot) | enter month,day,hh.ddd,long.,lat. * .br | 7 | \fBtm\fR (landsat) | enter month,day,hh.ddd,long.,lat. * .br | 8 | \fBetm+\fR (landsat7) | enter month,day,hh.ddd,long.,lat. * * NOTE: for hrv, tm and etm+ experiments, longitude and lattitude are the coordinates of the scene center. Lattitude must be >0 for northern hemisphere and 0 for eastern hemisphere and <0 for western. .SS B. Atmospheric model .br | Code | Meaning .br | 0 | no gaseous absorption .br | 1 | tropical .br | 2 | midlatitude summer .br | 3 | midlatitude winter .br | 4 | subarctic summer .br | 5 | subarctic winter .br | 6 | us standard 62 .br | 7 | Define your own atmospheric model as a set of the following 5 parameters per each measurement: .br .br altitude [km] .br pressure [mb] .br temperature [k] .br h2o density [g/m3] .br o3 density [g/m3] .br For example: there is one radiosonde measurement for each altitude of 0-25km at a step of 1km, one measurment for each altitude of 25-50km at a step of 5km, and two single measurements for altitudes 70km and 100km. This makes 34 measurments. In that case, there are 34*5 values to input. .br | 8 | Define your own atmospheric model providing values of the water vapor and ozone content: .br .br uw [g/cm2] .br uo3 [cm-atm] .br .br The profile is taken from us62. .SS C. Aerosols model .br | Code | Meaning | Details .br | 0 | no aerosols | .br | 1 | continental model | .br | 2 | maritime model | .br | 3 | urban model | .br | 4 | shettle model for background desert aerosol | .br | 5 | biomass burning | .br | 6 | stratospheric model | .br | 7 | define your own model | Enter the volumic percentage of each component: .br .br c(1) = volumic % of dust-like .br c(2) = volumic % of water-soluble .br c(3) = volumic % of oceanic .br c(4) = volumic % of soot .br .br All values between 0 and 1. .br | 8 | define your own model | Size distribution function: Multimodal Log Normal (up to 4 modes). .br | 9 | define your own model | Size distribution function: Modified gamma. .br | 10 | define your own model | Size distribution function: Junge Power-Law. .br | 11 | define your own model | Sun-photometer measurements, 50 values max, entered as: .br .br r and d V / d (logr) .br .br where r is the radius [micron], V is the volume, d V / d (logr) [cm3/cm2/micron]. .br .br Followed by: .br .br nr and ni for each wavelength .br .br where nr and ni are respectively the real and imaginary part of the refractive index. .SS D. Aerosol model concentration (visibility) If you have an estimate of the meteorological parameter visibility v, enter directly the value of v [km] (the aerosol optical depth will be computed from a standard aerosol profile). .PP If you have an estimate of aerosol optical depth, enter v=0 for the visibility and enter the aerosol optical depth at 550nm. .PP NOTE: if iaer=0, enter v=-1. .SS E. Target altitude (xps), sensor platform (xpp) xps <=0 means the target is at the sea level. .br xps >0 means you know the altitude of the target expressed in km, and you put that value as xps. .br .br xpp=-1000 means that the sensor is on board a satellite. .br xpp=0 means that the sensor is at the ground level. .br -100