1CHETF2(1)                LAPACK routine (version 3.2)                CHETF2(1)
2
3
4

NAME

6       CHETF2  -  computes  the  factorization of a complex Hermitian matrix A
7       using the Bunch-Kaufman diagonal pivoting method
8

SYNOPSIS

10       SUBROUTINE CHETF2( UPLO, N, A, LDA, IPIV, INFO )
11
12           CHARACTER      UPLO
13
14           INTEGER        INFO, LDA, N
15
16           INTEGER        IPIV( * )
17
18           COMPLEX        A( LDA, * )
19

PURPOSE

21       CHETF2 computes the factorization of a complex Hermitian matrix A using
22       the Bunch-Kaufman diagonal pivoting method:
23          A = U*D*U'  or  A = L*D*L'
24       where  U (or L) is a product of permutation and unit upper (lower) tri‐
25       angular matrices, U' is the conjugate transpose of U, and D is  Hermit‐
26       ian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  This is
27       the unblocked version of the algorithm, calling Level 2 BLAS.
28

ARGUMENTS

30       UPLO    (input) CHARACTER*1
31               Specifies whether the upper or lower  triangular  part  of  the
32               Hermitian matrix A is stored:
33               = 'U':  Upper triangular
34               = 'L':  Lower triangular
35
36       N       (input) INTEGER
37               The order of the matrix A.  N >= 0.
38
39       A       (input/output) COMPLEX array, dimension (LDA,N)
40               On  entry,  the Hermitian matrix A.  If UPLO = 'U', the leading
41               n-by-n upper triangular part of A contains the upper triangular
42               part of the matrix A, and the strictly lower triangular part of
43               A is not referenced.  If UPLO = 'L', the leading  n-by-n  lower
44               triangular  part of A contains the lower triangular part of the
45               matrix A, and the strictly upper triangular part of  A  is  not
46               referenced.   On exit, the block diagonal matrix D and the mul‐
47               tipliers used to obtain the factor U or L (see below  for  fur‐
48               ther details).
49
50       LDA     (input) INTEGER
51               The leading dimension of the array A.  LDA >= max(1,N).
52
53       IPIV    (output) INTEGER array, dimension (N)
54               Details  of  the interchanges and the block structure of D.  If
55               IPIV(k) > 0, then rows and columns k and  IPIV(k)  were  inter‐
56               changed  and  D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U'
57               and IPIV(k) = IPIV(k-1) < 0, then  rows  and  columns  k-1  and
58               -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diag‐
59               onal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1)  <  0,  then
60               rows  and  columns  k+1  and  -IPIV(k)  were  interchanged  and
61               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
62
63       INFO    (output) INTEGER
64               = 0: successful exit
65               < 0: if INFO = -k, the k-th argument had an illegal value
66               > 0: if INFO = k, D(k,k) is exactly  zero.   The  factorization
67               has  been completed, but the block diagonal matrix D is exactly
68               singular, and division by zero will occur  if  it  is  used  to
69               solve a system of equations.
70

FURTHER DETAILS

72       09-29-06 - patch from
73         Bobby Cheng, MathWorks
74         Replace l.210 and l.392
75              IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
76         by
77              IF(  (MAX(  ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
78       01-01-96 - Based on modifications by
79         J. Lewis, Boeing Computer Services Company
80         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA If
81       UPLO = 'U', then A = U*D*U', where
82          U = P(n)*U(n)* ... *P(k)U(k)* ...,
83       i.e.,  U is a product of terms P(k)*U(k), where k decreases from n to 1
84       in steps of 1 or 2, and D is a block diagonal matrix  with  1-by-1  and
85       2-by-2  diagonal  blocks D(k).  P(k) is a permutation matrix as defined
86       by IPIV(k), and U(k) is a unit upper triangular matrix,  such  that  if
87       the diagonal block D(k) is of order s (s = 1 or 2), then
88                  (   I    v    0   )   k-s
89          U(k) =  (   0    I    0   )   s
90                  (   0    0    I   )   n-k
91                     k-s   s   n-k
92       If  s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).  If s =
93       2, the upper triangle of  D(k)  overwrites  A(k-1,k-1),  A(k-1,k),  and
94       A(k,k), and v overwrites A(1:k-2,k-1:k).
95       If UPLO = 'L', then A = L*D*L', where
96          L = P(1)*L(1)* ... *P(k)*L(k)* ...,
97       i.e.,  L is a product of terms P(k)*L(k), where k increases from 1 to n
98       in steps of 1 or 2, and D is a block diagonal matrix  with  1-by-1  and
99       2-by-2  diagonal  blocks D(k).  P(k) is a permutation matrix as defined
100       by IPIV(k), and L(k) is a unit lower triangular matrix,  such  that  if
101       the diagonal block D(k) is of order s (s = 1 or 2), then
102                  (   I    0     0   )  k-1
103          L(k) =  (   0    I     0   )  s
104                  (   0    v     I   )  n-k-s+1
105                     k-1   s  n-k-s+1
106       If  s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).  If s =
107       2,  the  lower  triangle  of  D(k)  overwrites  A(k,k),  A(k+1,k),  and
108       A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
109
110
111
112 LAPACK routine (version 3.2)    November 2008                       CHETF2(1)
Impressum