1CLAED0(1) LAPACK routine (version 3.2) CLAED0(1)
2
3
4
6 CLAED0 - the divide and conquer method, CLAED0 computes all eigenvalues
7 of a symmetric tridiagonal matrix which is one diagonal block of those
8 from reducing a dense or band Hermitian matrix and corresponding eigen‐
9 vectors of the dense or band matrix
10
12 SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK,
13 INFO )
14
15 INTEGER INFO, LDQ, LDQS, N, QSIZ
16
17 INTEGER IWORK( * )
18
19 REAL D( * ), E( * ), RWORK( * )
20
21 COMPLEX Q( LDQ, * ), QSTORE( LDQS, * )
22
24 Using the divide and conquer method, CLAED0 computes all eigenvalues of
25 a symmetric tridiagonal matrix which is one diagonal block of those
26 from reducing a dense or band Hermitian matrix and corresponding eigen‐
27 vectors of the dense or band matrix.
28
30 QSIZ (input) INTEGER
31 The dimension of the unitary matrix used to reduce the full
32 matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
33
34 N (input) INTEGER
35 The dimension of the symmetric tridiagonal matrix. N >= 0.
36
37 D (input/output) REAL array, dimension (N)
38 On entry, the diagonal elements of the tridiagonal matrix. On
39 exit, the eigenvalues in ascending order.
40
41 E (input/output) REAL array, dimension (N-1)
42 On entry, the off-diagonal elements of the tridiagonal matrix.
43 On exit, E has been destroyed.
44
45 Q (input/output) COMPLEX array, dimension (LDQ,N)
46 On entry, Q must contain an QSIZ x N matrix whose columns uni‐
47 tarily orthonormal. It is a part of the unitary matrix that
48 reduces the full dense Hermitian matrix to a (reducible) symmet‐
49 ric tridiagonal matrix.
50
51 LDQ (input) INTEGER
52 The leading dimension of the array Q. LDQ >= max(1,N).
53
54 IWORK (workspace) INTEGER array,
55 the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg(
56 N ) = smallest integer k such that 2^k >= N )
57
58 RWORK (workspace) REAL array,
59 dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest
60 integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX array,
61 dimension (LDQS, N) Used to store parts of the eigenvector
62 matrix when the updating matrix multiplies take place.
63
64 LDQS (input) INTEGER
65 The leading dimension of the array QSTORE. LDQS >= max(1,N).
66
67 INFO (output) INTEGER
68 = 0: successful exit.
69 < 0: if INFO = -i, the i-th argument had an illegal value.
70 > 0: The algorithm failed to compute an eigenvalue while work‐
71 ing on the submatrix lying in rows and columns INFO/(N+1)
72 through mod(INFO,N+1).
73
74
75
76 LAPACK routine (version 3.2) November 2008 CLAED0(1)