1CPFTRF(1)LAPACK routine (version 3.2)                                 CPFTRF(1)
2
3
4

NAME

6       CPFTRF  -  computes  the  Cholesky factorization of a complex Hermitian
7       positive definite matrix A
8

SYNOPSIS

10       SUBROUTINE CPFTRF( TRANSR, UPLO, N, A, INFO )
11
12           CHARACTER      TRANSR, UPLO
13
14           INTEGER        N, INFO
15
16           COMPLEX        A( 0: * )
17

PURPOSE

19       CPFTRF computes the Cholesky factorization of a complex Hermitian posi‐
20       tive definite matrix A.  The factorization has the form
21          A = U**H * U,  if UPLO = 'U', or
22          A = L  * L**H,  if UPLO = 'L',
23       where  U is an upper triangular matrix and L is lower triangular.  This
24       is the block version of the algorithm, calling Level 3 BLAS.
25

ARGUMENTS

27       TRANSR    (input) CHARACTER
28                 = 'N':  The Normal TRANSR of RFP A is stored;
29                 = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
30
31       UPLO    (input) CHARACTER
32               = 'U':  Upper triangle of RFP A is stored;
33               = 'L':  Lower triangle of RFP A is stored.
34
35       N       (input) INTEGER
36               The order of the matrix A.  N >= 0.
37
38       A       (input/output) COMPLEX array, dimension ( N*(N+1)/2 );
39               On entry, the Hermitian matrix A in RFP format. RFP  format  is
40               described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
41               then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
42               (0:N-1,0:k)  when  N is odd; k=N/2. IF TRANSR = 'C' then RFP is
43               the Conjugate-transpose of RFP A as defined when TRANSR =  'N'.
44               The contents of RFP A are defined by UPLO as follows: If UPLO =
45               'U' the RFP A contains the nt elements of upper  packed  A.  If
46               UPLO  =  'L' the RFP A contains the elements of lower packed A.
47               The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When  TRANSR  is
48               'N'  the  LDA  is N+1 when N is even and N is odd. See the Note
49               below for more details.  On exit, if INFO = 0, the factor U  or
50               L  from  the  Cholesky  factorization RFP A = U**H*U or RFP A =
51               L*L**H.
52
53       INFO    (output) INTEGER
54               = 0:  successful exit
55               < 0:  if INFO = -i, the i-th argument had an illegal value
56               > 0:  if INFO = i, the leading minor of order i is not positive
57               definite,  and  the factorization could not be completed.  Fur‐
58               ther Notes on RFP Format: ============================ We first
59               consider  Standard  Packed  Format  when N is even.  We give an
60               example where N = 6.  AP is Upper             AP is Lower 00 01
61               02  03  04  05        00 11 12 13 14 15       10 11 22 23 24 25
62               20 21 22 33 34 35       30 31 32 33 44 45       40 41 42 43  44
63               55        50  51  52 53 54 55 Let TRANSR = 'N'. RFP holds AP as
64               follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists
65               of the last
66               three  columns  of AP upper. The lower triangle A(4:6,0:2) con‐
67               sists of conjugate-transpose of the first three columns  of  AP
68               upper.   For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists
69               of the first
70               three columns of AP lower. The upper triangle  A(0:2,0:2)  con‐
71               sists  of  conjugate-transpose  of the last three columns of AP
72               lower.  To denote conjugate we place -- above the element. This
73               covers   the   case   N   even   and   TRANSR  =  'N'.   RFP  A
74               RFP A -- -- -- 03 04 05                33 43 53 -- -- 13 14  15
75               00  44  54  --  23  24  25                 10  11  55  33 34 35
76               20 21 22 -- 00 44 45                30 31 32 --  --  01  11  55
77               40  41  42  --  --  -- 02 12 22                50 51 52 Now let
78               TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
79               transpose   of   RFP   A  above.  One  therefore  gets:  RFP  A
80               RFP A -- -- -- --                -- -- -- -- -- -- 03 13 23  33
81               00   01   02     33  00  10  20  30  40  50  --  --  --  --  --
82               -- -- -- -- -- 04 14 24 34 44 11 12    43 44 11 21 31 41 51  --
83               --  -- -- -- --                -- -- -- -- 05 15 25 35 45 55 22
84               53 54 55 22 32 42 52 We next  consider Standard  Packed  Format
85               when  N  is  odd.  We give an example where N = 5.  AP is Upper
86               AP is Lower 00  01  02  03  04               00  11  12  13  14
87               10  11  22 23 24              20 21 22 33 34              30 31
88               32 33 44              40 41 42 43 44  Let  TRANSR  =  'N'.  RFP
89               holds  AP  as  follows:  For  UPLO  =  'U'  the upper trapezoid
90               A(0:4,0:2) consists of the last
91               three columns of AP upper. The lower triangle  A(3:4,0:1)  con‐
92               sists  of  conjugate-transpose of the first two   columns of AP
93               upper.  For UPLO = 'L' the lower trapezoid A(0:4,0:2)  consists
94               of the first
95               three  columns  of AP lower. The upper triangle A(0:1,1:2) con‐
96               sists of conjugate-transpose of the last two    columns  of  AP
97               lower.  To denote conjugate we place -- above the element. This
98               covers  the  case  N  odd    and   TRANSR   =   'N'.    RFP   A
99               RFP  A  --  --  02  03  04                 00 33 43 -- 12 13 14
100               10 11 44  22  23  24                 20  21  22  --  00  33  34
101               30  31 32 -- -- 01 11 44                40 41 42 Now let TRANSR
102               = 'C'. RFP A in both UPLO cases is just the  conjugate-  trans‐
103               pose   of   RFP   A   above.   One   therefore   gets:   RFP  A
104               RFP A -- -- --                   -- -- -- -- -- -- 02 12 22  00
105               01               00   10   20   30   40   50   --   --   --  --
106               -- -- -- -- -- 03 13 23 33 11             33 11 21 31 41 51  --
107               --  --  --  --                    --  --  --  -- 04 14 24 34 44
108               43 44 22 32 42 52
109
110
111
112 LAPACK routine (version 3.2)    November 2008                       CPFTRF(1)
Impressum