1CPFTRS(1)LAPACK routine (version 3.2)                                 CPFTRS(1)
2
3
4

NAME

6       CPFTRS  -  solves a system of linear equations A*X = B with a Hermitian
7       positive definite matrix A using the Cholesky factorization A =  U**H*U
8       or A = L*L**H computed by CPFTRF
9

SYNOPSIS

11       SUBROUTINE CPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
12
13           CHARACTER      TRANSR, UPLO
14
15           INTEGER        INFO, LDB, N, NRHS
16
17           COMPLEX        A( 0: * ), B( LDB, * )
18

PURPOSE

20       CPFTRS  solves  a  system  of linear equations A*X = B with a Hermitian
21       positive definite matrix A using the Cholesky factorization A =  U**H*U
22       or A = L*L**H computed by CPFTRF.
23

ARGUMENTS

25       TRANSR    (input) CHARACTER
26                 = 'N':  The Normal TRANSR of RFP A is stored;
27                 = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
28
29       UPLO    (input) CHARACTER
30               = 'U':  Upper triangle of RFP A is stored;
31               = 'L':  Lower triangle of RFP A is stored.
32
33       N       (input) INTEGER
34               The order of the matrix A.  N >= 0.
35
36       NRHS    (input) INTEGER
37               The  number of right hand sides, i.e., the number of columns of
38               the matrix B.  NRHS >= 0.
39
40       A       (input) COMPLEX array, dimension ( N*(N+1)/2 );
41               The triangular factor U or L from the Cholesky factorization of
42               RFP  A  = U**H*U or RFP A = L*L**H, as computed by CPFTRF.  See
43               note below for more details about RFP A.
44
45       B       (input/output) COMPLEX array, dimension (LDB,NRHS)
46               On entry, the right hand side matrix B.  On exit, the  solution
47               matrix X.
48
49       LDB     (input) INTEGER
50               The leading dimension of the array B.  LDB >= max(1,N).
51
52       INFO    (output) INTEGER
53               = 0:  successful exit
54               < 0:  if INFO = -i, the i-th argument had an illegal value
55

FURTHER DETAILS

57       We first consider Standard Packed Format when N is even.
58       We give an example where N = 6.
59           AP is Upper             AP is Lower
60        00 01 02 03 04 05       00
61           11 12 13 14 15       10 11
62              22 23 24 25       20 21 22
63                 33 34 35       30 31 32 33
64                    44 45       40 41 42 43 44
65                       55       50 51 52 53 54 55
66       Let TRANSR = 'N'. RFP holds AP as follows:
67       For  UPLO  =  'U'  the  upper trapezoid A(0:5,0:2) consists of the last
68       three columns of AP upper. The lower triangle  A(4:6,0:2)  consists  of
69       conjugate-transpose of the first three columns of AP upper.  For UPLO =
70       'L' the lower trapezoid A(1:6,0:2) consists of the first three  columns
71       of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-trans‐
72       pose of the last three columns of AP lower.   To  denote  conjugate  we
73       place  --  above  the element. This covers the case N even and TRANSR =
74       'N'.
75              RFP A                   RFP A
76                                     -- -- --
77             03 04 05                33 43 53
78                                        -- --
79             13 14 15                00 44 54
80                                           --
81             23 24 25                10 11 55
82             33 34 35                20 21 22
83             --
84             00 44 45                30 31 32
85             -- --
86             01 11 55                40 41 42
87             -- -- --
88             02 12 22                50 51 52
89       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
90       transpose of RFP A above. One therefore gets:
91                RFP A                   RFP A
92          -- -- -- --                -- -- -- -- -- --
93          03 13 23 33 00 01 02    33 00 10 20 30 40 50
94          -- -- -- -- --                -- -- -- -- --
95          04 14 24 34 44 11 12    43 44 11 21 31 41 51
96          -- -- -- -- -- --                -- -- -- --
97          05 15 25 35 45 55 22    53 54 55 22 32 42 52
98       We next  consider Standard Packed Format when N is odd.
99       We give an example where N = 5.
100          AP is Upper                 AP is Lower
101        00 01 02 03 04              00
102           11 12 13 14              10 11
103              22 23 24              20 21 22
104                 33 34              30 31 32 33
105                    44              40 41 42 43 44
106       Let TRANSR = 'N'. RFP holds AP as follows:
107       For  UPLO  =  'U'  the  upper trapezoid A(0:4,0:2) consists of the last
108       three columns of AP upper. The lower triangle  A(3:4,0:1)  consists  of
109       conjugate-transpose of the first two   columns of AP upper.  For UPLO =
110       'L' the lower trapezoid A(0:4,0:2) consists of the first three  columns
111       of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-trans‐
112       pose of the last two   columns of AP lower.   To  denote  conjugate  we
113       place  --  above  the element. This covers the case N odd  and TRANSR =
114       'N'.
115              RFP A                   RFP A
116                                        -- --
117             02 03 04                00 33 43
118                                           --
119             12 13 14                10 11 44
120             22 23 24                20 21 22
121             --
122             00 33 34                30 31 32
123             -- --
124             01 11 44                40 41 42
125       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
126       transpose of RFP A above. One therefore gets:
127                RFP A                   RFP A
128          -- -- --                   -- -- -- -- -- --
129          02 12 22 00 01             00 10 20 30 40 50
130          -- -- -- --                   -- -- -- -- --
131          03 13 23 33 11             33 11 21 31 41 51
132          -- -- -- -- --                   -- -- -- --
133          04 14 24 34 44             43 44 22 32 42 52
134
135
136
137 LAPACK routine (version 3.2)    November 2008                       CPFTRS(1)
Impressum