1CSYRFS(1)                LAPACK routine (version 3.2)                CSYRFS(1)
2
3
4

NAME

6       CSYRFS - improves the computed solution to a system of linear equations
7       when the coefficient matrix is symmetric indefinite, and provides error
8       bounds and backward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE CSYRFS( UPLO,  N,  NRHS,  A, LDA, AF, LDAF, IPIV, B, LDB, X,
12                          LDX, FERR, BERR, WORK, RWORK, INFO )
13
14           CHARACTER      UPLO
15
16           INTEGER        INFO, LDA, LDAF, LDB, LDX, N, NRHS
17
18           INTEGER        IPIV( * )
19
20           REAL           BERR( * ), FERR( * ), RWORK( * )
21
22           COMPLEX        A( LDA, * ), AF( LDAF, * ), B( LDB, * ), WORK( *  ),
23                          X( LDX, * )
24

PURPOSE

26       CSYRFS  improves  the computed solution to a system of linear equations
27       when the coefficient matrix is symmetric indefinite, and provides error
28       bounds and backward error estimates for the solution.
29

ARGUMENTS

31       UPLO    (input) CHARACTER*1
32               = 'U':  Upper triangle of A is stored;
33               = 'L':  Lower triangle of A is stored.
34
35       N       (input) INTEGER
36               The order of the matrix A.  N >= 0.
37
38       NRHS    (input) INTEGER
39               The  number of right hand sides, i.e., the number of columns of
40               the matrices B and X.  NRHS >= 0.
41
42       A       (input) COMPLEX array, dimension (LDA,N)
43               The symmetric matrix A.  If UPLO  =  'U',  the  leading  N-by-N
44               upper  triangular  part of A contains the upper triangular part
45               of the matrix A, and the strictly lower triangular part of A is
46               not referenced.  If UPLO = 'L', the leading N-by-N lower trian‐
47               gular part of A contains  the  lower  triangular  part  of  the
48               matrix  A,  and  the strictly upper triangular part of A is not
49               referenced.
50
51       LDA     (input) INTEGER
52               The leading dimension of the array A.  LDA >= max(1,N).
53
54       AF      (input) COMPLEX array, dimension (LDAF,N)
55               The factored form of the matrix A.  AF contains the block diag‐
56               onal  matrix  D and the multipliers used to obtain the factor U
57               or L from the factorization A = U*D*U**T or  A  =  L*D*L**T  as
58               computed by CSYTRF.
59
60       LDAF    (input) INTEGER
61               The leading dimension of the array AF.  LDAF >= max(1,N).
62
63       IPIV    (input) INTEGER array, dimension (N)
64               Details  of  the  interchanges  and the block structure of D as
65               determined by CSYTRF.
66
67       B       (input) COMPLEX array, dimension (LDB,NRHS)
68               The right hand side matrix B.
69
70       LDB     (input) INTEGER
71               The leading dimension of the array B.  LDB >= max(1,N).
72
73       X       (input/output) COMPLEX array, dimension (LDX,NRHS)
74               On entry, the solution matrix X, as  computed  by  CSYTRS.   On
75               exit, the improved solution matrix X.
76
77       LDX     (input) INTEGER
78               The leading dimension of the array X.  LDX >= max(1,N).
79
80       FERR    (output) REAL array, dimension (NRHS)
81               The estimated forward error bound for each solution vector X(j)
82               (the j-th column of the solution matrix X).  If  XTRUE  is  the
83               true  solution  corresponding  to X(j), FERR(j) is an estimated
84               upper bound for the magnitude of the largest element in (X(j) -
85               XTRUE) divided by the magnitude of the largest element in X(j).
86               The estimate is as reliable as the estimate for RCOND,  and  is
87               almost always a slight overestimate of the true error.
88
89       BERR    (output) REAL array, dimension (NRHS)
90               The componentwise relative backward error of each solution vec‐
91               tor X(j) (i.e., the smallest relative change in any element  of
92               A or B that makes X(j) an exact solution).
93
94       WORK    (workspace) COMPLEX array, dimension (2*N)
95
96       RWORK   (workspace) REAL array, dimension (N)
97
98       INFO    (output) INTEGER
99               = 0:  successful exit
100               < 0:  if INFO = -i, the i-th argument had an illegal value
101

PARAMETERS

103       ITMAX is the maximum number of steps of iterative refinement.
104
105
106
107 LAPACK routine (version 3.2)    November 2008                       CSYRFS(1)
Impressum