1CUNGQR(1) LAPACK routine (version 3.2) CUNGQR(1)
2
3
4
6 CUNGQR - generates an M-by-N complex matrix Q with orthonormal columns,
7
9 SUBROUTINE CUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
10
11 INTEGER INFO, K, LDA, LWORK, M, N
12
13 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
14
16 CUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
17 which is defined as the first N columns of a product of K elementary
18 reflectors of order M
19 Q = H(1) H(2) . . . H(k)
20 as returned by CGEQRF.
21
23 M (input) INTEGER
24 The number of rows of the matrix Q. M >= 0.
25
26 N (input) INTEGER
27 The number of columns of the matrix Q. M >= N >= 0.
28
29 K (input) INTEGER
30 The number of elementary reflectors whose product defines the
31 matrix Q. N >= K >= 0.
32
33 A (input/output) COMPLEX array, dimension (LDA,N)
34 On entry, the i-th column must contain the vector which defines
35 the elementary reflector H(i), for i = 1,2,...,k, as returned
36 by CGEQRF in the first k columns of its array argument A. On
37 exit, the M-by-N matrix Q.
38
39 LDA (input) INTEGER
40 The first dimension of the array A. LDA >= max(1,M).
41
42 TAU (input) COMPLEX array, dimension (K)
43 TAU(i) must contain the scalar factor of the elementary reflec‐
44 tor H(i), as returned by CGEQRF.
45
46 WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
47 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
48
49 LWORK (input) INTEGER
50 The dimension of the array WORK. LWORK >= max(1,N). For opti‐
51 mum performance LWORK >= N*NB, where NB is the optimal block‐
52 size. If LWORK = -1, then a workspace query is assumed; the
53 routine only calculates the optimal size of the WORK array,
54 returns this value as the first entry of the WORK array, and no
55 error message related to LWORK is issued by XERBLA.
56
57 INFO (output) INTEGER
58 = 0: successful exit
59 < 0: if INFO = -i, the i-th argument has an illegal value
60
61
62
63 LAPACK routine (version 3.2) November 2008 CUNGQR(1)