1CUNMRZ(1)                LAPACK routine (version 3.2)                CUNMRZ(1)
2
3
4

NAME

6       CUNMRZ  -  overwrites the general complex M-by-N matrix C with   SIDE =
7       'L' SIDE = 'R' TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE CUNMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,  WORK,
11                          LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS
14
15           INTEGER        INFO, K, L, LDA, LDC, LWORK, M, N
16
17           COMPLEX        A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18

PURPOSE

20       CUNMRZ overwrites the general complex M-by-N matrix C with TRANS = 'C':
21       Q**H * C       C * Q**H
22       where Q is a complex unitary matrix defined as the product of k elemen‐
23       tary reflectors
24             Q = H(1) H(2) . . . H(k)
25       as  returned by CTZRZF. Q is of order M if SIDE = 'L' and of order N if
26       SIDE = 'R'.
27

ARGUMENTS

29       SIDE    (input) CHARACTER*1
30               = 'L': apply Q or Q**H from the Left;
31               = 'R': apply Q or Q**H from the Right.
32
33       TRANS   (input) CHARACTER*1
34               = 'N':  No transpose, apply Q;
35               = 'C':  Conjugate transpose, apply Q**H.
36
37       M       (input) INTEGER
38               The number of rows of the matrix C. M >= 0.
39
40       N       (input) INTEGER
41               The number of columns of the matrix C. N >= 0.
42
43       K       (input) INTEGER
44               The number of elementary reflectors whose product  defines  the
45               matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
46               0.
47
48       L       (input) INTEGER
49               The number of columns of the matrix A containing the meaningful
50               part  of  the Householder reflectors.  If SIDE = 'L', M >= L >=
51               0, if SIDE = 'R', N >= L >= 0.
52
53       A       (input) COMPLEX array, dimension
54               (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row  must
55               contain the vector which defines the elementary reflector H(i),
56               for i = 1,2,...,k, as returned by CTZRZF in the last k rows  of
57               its  array  argument  A.   A  is  modified  by  the routine but
58               restored on exit.
59
60       LDA     (input) INTEGER
61               The leading dimension of the array A. LDA >= max(1,K).
62
63       TAU     (input) COMPLEX array, dimension (K)
64               TAU(i) must contain the scalar factor of the elementary reflec‐
65               tor H(i), as returned by CTZRZF.
66
67       C       (input/output) COMPLEX array, dimension (LDC,N)
68               On  entry,  the  M-by-N matrix C.  On exit, C is overwritten by
69               Q*C or Q**H*C or C*Q**H or C*Q.
70
71       LDC     (input) INTEGER
72               The leading dimension of the array C. LDC >= max(1,M).
73
74       WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
75               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
76
77       LWORK   (input) INTEGER
78               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
79               max(1,N);  if  SIDE = 'R', LWORK >= max(1,M).  For optimum per‐
80               formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE
81               =  'R', where NB is the optimal blocksize.  If LWORK = -1, then
82               a workspace query is assumed; the routine only  calculates  the
83               optimal size of the WORK array, returns this value as the first
84               entry of the WORK array, and no error message related to  LWORK
85               is issued by XERBLA.
86
87       INFO    (output) INTEGER
88               = 0:  successful exit
89               < 0:  if INFO = -i, the i-th argument had an illegal value
90

FURTHER DETAILS

92       Based on contributions by
93         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
94
95
96
97 LAPACK routine (version 3.2)    November 2008                       CUNMRZ(1)
Impressum