1DGEQP3(1) LAPACK routine (version 3.2) DGEQP3(1)
2
3
4
6 DGEQP3 - computes a QR factorization with column pivoting of a matrix A
7
9 SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
10
11 INTEGER INFO, LDA, LWORK, M, N
12
13 INTEGER JPVT( * )
14
15 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
16
18 DGEQP3 computes a QR factorization with column pivoting of a matrix A:
19 A*P = Q*R using Level 3 BLAS.
20
22 M (input) INTEGER
23 The number of rows of the matrix A. M >= 0.
24
25 N (input) INTEGER
26 The number of columns of the matrix A. N >= 0.
27
28 A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
29 On entry, the M-by-N matrix A. On exit, the upper triangle of
30 the array contains the min(M,N)-by-N upper trapezoidal matrix
31 R; the elements below the diagonal, together with the array
32 TAU, represent the orthogonal matrix Q as a product of min(M,N)
33 elementary reflectors.
34
35 LDA (input) INTEGER
36 The leading dimension of the array A. LDA >= max(1,M).
37
38 JPVT (input/output) INTEGER array, dimension (N)
39 On entry, if JPVT(J).ne.0, the J-th column of A is permuted to
40 the front of A*P (a leading column); if JPVT(J)=0, the J-th
41 column of A is a free column. On exit, if JPVT(J)=K, then the
42 J-th column of A*P was the the K-th column of A.
43
44 TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
45 The scalar factors of the elementary reflectors.
46
47 WORK (workspace/output) DOUBLE PRECISION array, dimension
48 (MAX(1,LWORK))
49 On exit, if INFO=0, WORK(1) returns the optimal LWORK.
50
51 LWORK (input) INTEGER
52 The dimension of the array WORK. LWORK >= 3*N+1. For optimal
53 performance LWORK >= 2*N+( N+1 )*NB, where NB is the optimal
54 blocksize. If LWORK = -1, then a workspace query is assumed;
55 the routine only calculates the optimal size of the WORK array,
56 returns this value as the first entry of the WORK array, and no
57 error message related to LWORK is issued by XERBLA.
58
59 INFO (output) INTEGER
60 = 0: successful exit.
61 < 0: if INFO = -i, the i-th argument had an illegal value.
62
64 The matrix Q is represented as a product of elementary reflectors
65 Q = H(1) H(2) . . . H(k), where k = min(m,n).
66 Each H(i) has the form
67 H(i) = I - tau * v * v'
68 where tau is a real/complex scalar, and v is a real/complex vector with
69 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
70 and tau in TAU(i).
71 Based on contributions by
72 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
73 X. Sun, Computer Science Dept., Duke University, USA
74
75
76
77 LAPACK routine (version 3.2) November 2008 DGEQP3(1)