1DLAQP2(1) LAPACK auxiliary routine (version 3.2) DLAQP2(1)
2
3
4
6 DLAQP2 - computes a QR factorization with column pivoting of the block
7 A(OFFSET+1:M,1:N)
8
10 SUBROUTINE DLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK )
11
12 INTEGER LDA, M, N, OFFSET
13
14 INTEGER JPVT( * )
15
16 DOUBLE PRECISION A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
17 WORK( * )
18
20 DLAQP2 computes a QR factorization with column pivoting of the block
21 A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted,
22 but not factorized.
23
25 M (input) INTEGER
26 The number of rows of the matrix A. M >= 0.
27
28 N (input) INTEGER
29 The number of columns of the matrix A. N >= 0.
30
31 OFFSET (input) INTEGER
32 The number of rows of the matrix A that must be pivoted but no
33 factorized. OFFSET >= 0.
34
35 A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
36 On entry, the M-by-N matrix A. On exit, the upper triangle of
37 block A(OFFSET+1:M,1:N) is the triangular factor obtained; the
38 elements in block A(OFFSET+1:M,1:N) below the diagonal,
39 together with the array TAU, represent the orthogonal matrix Q
40 as a product of elementary reflectors. Block A(1:OFFSET,1:N)
41 has been accordingly pivoted, but no factorized.
42
43 LDA (input) INTEGER
44 The leading dimension of the array A. LDA >= max(1,M).
45
46 JPVT (input/output) INTEGER array, dimension (N)
47 On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
48 to the front of A*P (a leading column); if JPVT(i) = 0, the i-
49 th column of A is a free column. On exit, if JPVT(i) = k, then
50 the i-th column of A*P was the k-th column of A.
51
52 TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
53 The scalar factors of the elementary reflectors.
54
55 VN1 (input/output) DOUBLE PRECISION array, dimension (N)
56 The vector with the partial column norms.
57
58 VN2 (input/output) DOUBLE PRECISION array, dimension (N)
59 The vector with the exact column norms.
60
61 WORK (workspace) DOUBLE PRECISION array, dimension (N)
62
64 Based on contributions by
65 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
66 X. Sun, Computer Science Dept., Duke University, USA
67 Partial column norm updating strategy modified by
68 Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
69 University of Zagreb, Croatia.
70 June 2006.
71 For more details see LAPACK Working Note 176.
72
73
74
75 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 DLAQP2(1)