1DLAR1V(1)           LAPACK auxiliary routine (version 3.2)           DLAR1V(1)
2
3
4

NAME

6       DLAR1V  - computes the (scaled) r-th column of the inverse of the sumb‐
7       matrix in rows B1 through BN of the tridiagonal matrix L D L^T -  sigma
8       I
9

SYNOPSIS

11       SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, PIVMIN, GAPTOL, Z,
12                          WANTNC, NEGCNT,  ZTZ,  MINGMA,  R,  ISUPPZ,  NRMINV,
13                          RESID, RQCORR, WORK )
14
15           LOGICAL        WANTNC
16
17           INTEGER        B1, BN, N, NEGCNT, R
18
19           DOUBLE         PRECISION  GAPTOL,  LAMBDA,  MINGMA, NRMINV, PIVMIN,
20                          RESID, RQCORR, ZTZ
21
22           INTEGER        ISUPPZ( * )
23
24           DOUBLE         PRECISION D( * ), L( * ), LD( * ), LLD( * ), WORK( *
25                          )
26
27           DOUBLE         PRECISION Z( * )
28

PURPOSE

30       DLAR1V  computes the (scaled) r-th column of the inverse of the sumbma‐
31       trix in rows B1 through BN of the tridiagonal matrix L D L^T - sigma I.
32       When  sigma  is close to an eigenvalue, the computed vector is an accu‐
33       rate eigenvector. Usually, r corresponds to the index where the  eigen‐
34       vector  is  largest  in magnitude.  The following steps accomplish this
35       computation :
36       (a) Stationary qd transform,  L D L^T - sigma I = L(+) D(+) L(+)^T, (b)
37       Progressive  qd  transform,  L  D L^T - sigma I = U(-) D(-) U(-)^T, (c)
38       Computation of the diagonal elements of the inverse of
39           L D L^T - sigma I by combining the above transforms, and choosing
40           r as the index where the diagonal of the inverse is (one of the)
41           largest in magnitude.
42       (d) Computation of the (scaled) r-th column of the inverse using the
43           twisted factorization obtained by combining the top part of the
44           the stationary and the bottom part of the progressive transform.
45

ARGUMENTS

47       N        (input) INTEGER
48                The order of the matrix L D L^T.
49
50       B1       (input) INTEGER
51                First index of the submatrix of L D L^T.
52
53       BN       (input) INTEGER
54                Last index of the submatrix of L D L^T.
55
56       LAMBDA    (input) DOUBLE PRECISION
57                 The shift. In  order  to  compute  an  accurate  eigenvector,
58                 LAMBDA should be a good approximation to an eigenvalue of L D
59                 L^T.
60
61       L        (input) DOUBLE PRECISION array, dimension (N-1)
62                The (n-1) subdiagonal elements of the unit  bidiagonal  matrix
63                L, in elements 1 to N-1.
64
65       D        (input) DOUBLE PRECISION array, dimension (N)
66                The n diagonal elements of the diagonal matrix D.
67
68       LD       (input) DOUBLE PRECISION array, dimension (N-1)
69                The n-1 elements L(i)*D(i).
70
71       LLD      (input) DOUBLE PRECISION array, dimension (N-1)
72                The n-1 elements L(i)*L(i)*D(i).
73
74       PIVMIN   (input) DOUBLE PRECISION
75                The minimum pivot in the Sturm sequence.
76
77       GAPTOL   (input) DOUBLE PRECISION
78                Tolerance that indicates when eigenvector entries are negligi‐
79                ble w.r.t. their contribution to the residual.
80
81       Z        (input/output) DOUBLE PRECISION array, dimension (N)
82                On input, all entries of Z must be set to  0.   On  output,  Z
83                contains  the (scaled) r-th column of the inverse. The scaling
84                is such that Z(R) equals 1.
85
86       WANTNC   (input) LOGICAL
87                Specifies whether NEGCNT has to be computed.
88
89       NEGCNT   (output) INTEGER
90                If WANTNC is .TRUE. then NEGCNT  =  the  number  of  pivots  <
91                pivmin  in  the  matrix factorization L D L^T, and NEGCNT = -1
92                otherwise.
93
94       ZTZ      (output) DOUBLE PRECISION
95                The square of the 2-norm of Z.
96
97       MINGMA   (output) DOUBLE PRECISION
98                The reciprocal of the largest (in magnitude) diagonal  element
99                of the inverse of L D L^T - sigma I.
100
101       R        (input/output) INTEGER
102                The  twist index for the twisted factorization used to compute
103                Z.  On input, 0 <= R <= N. If R is input as 0, R is set to the
104                index  where (L D L^T - sigma I)^{-1} is largest in magnitude.
105                If 1 <= R <= N, R is unchanged.  On  output,  R  contains  the
106                twist  index  used  to  compute  Z.  Ideally, R designates the
107                position of the maximum entry in the eigenvector.
108
109       ISUPPZ   (output) INTEGER array, dimension (2)
110                The support of the vector in Z, i.e., the vector Z is  nonzero
111                only in elements ISUPPZ(1) through ISUPPZ( 2 ).
112
113       NRMINV   (output) DOUBLE PRECISION
114                NRMINV = 1/SQRT( ZTZ )
115
116       RESID    (output) DOUBLE PRECISION
117                The  residual  of  the FP vector.  RESID = ABS( MINGMA )/SQRT(
118                ZTZ )
119
120       RQCORR   (output) DOUBLE PRECISION
121                The  Rayleigh  Quotient  correction  to  LAMBDA.    RQCORR   =
122                MINGMA*TMP
123
124       WORK     (workspace) DOUBLE PRECISION array, dimension (4*N)
125

FURTHER DETAILS

127       Based on contributions by
128          Beresford Parlett, University of California, Berkeley, USA
129          Jim Demmel, University of California, Berkeley, USA
130          Inderjit Dhillon, University of Texas, Austin, USA
131          Osni Marques, LBNL/NERSC, USA
132          Christof Voemel, University of California, Berkeley, USA
133
134
135
136 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       DLAR1V(1)
Impressum