1DLARFT(1)           LAPACK auxiliary routine (version 3.2)           DLARFT(1)
2
3
4

NAME

6       DLARFT  -  forms the triangular factor T of a real block reflector H of
7       order n, which is defined as a product of k elementary reflectors
8

SYNOPSIS

10       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
11
12           IMPLICIT       NONE
13
14           CHARACTER      DIRECT, STOREV
15
16           INTEGER        K, LDT, LDV, N
17
18           DOUBLE         PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
19

PURPOSE

21       DLARFT forms the triangular factor T of a real  block  reflector  H  of
22       order  n, which is defined as a product of k elementary reflectors.  If
23       DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is  upper  triangular;  If
24       DIRECT  =  'B', H = H(k) . . . H(2) H(1) and T is lower triangular.  If
25       STOREV = 'C', the vector which defines the elementary reflector H(i) is
26       stored in the i-th column of the array V, and
27          H  =  I - V * T * V'
28       If STOREV = 'R', the vector which defines the elementary reflector H(i)
29       is stored in the i-th row of the array V, and
30          H  =  I - V' * T * V
31

ARGUMENTS

33       DIRECT  (input) CHARACTER*1
34               Specifies the order in which the elementary reflectors are mul‐
35               tiplied to form the block reflector:
36               = 'F': H = H(1) H(2) . . . H(k) (Forward)
37               = 'B': H = H(k) . . . H(2) H(1) (Backward)
38
39       STOREV  (input) CHARACTER*1
40               Specifies  how  the vectors which define the elementary reflec‐
41               tors are stored (see also Further Details):
42               = 'R': rowwise
43
44       N       (input) INTEGER
45               The order of the block reflector H. N >= 0.
46
47       K       (input) INTEGER
48               The order of the triangular factor T (= the number  of  elemen‐
49               tary reflectors). K >= 1.
50
51       V       (input/output) DOUBLE PRECISION array, dimension
52               (LDV,K)  if  STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V.
53               See further details.
54
55       LDV     (input) INTEGER
56               The leading dimension of the array V.  If STOREV = 'C', LDV  >=
57               max(1,N); if STOREV = 'R', LDV >= K.
58
59       TAU     (input) DOUBLE PRECISION array, dimension (K)
60               TAU(i) must contain the scalar factor of the elementary reflec‐
61               tor H(i).
62
63       T       (output) DOUBLE PRECISION array, dimension (LDT,K)
64               The k by k triangular factor T  of  the  block  reflector.   If
65               DIRECT  =  'F',  T  is  upper triangular; if DIRECT = 'B', T is
66               lower triangular. The rest of the array is not used.
67
68       LDT     (input) INTEGER
69               The leading dimension of the array T. LDT >= K.
70

FURTHER DETAILS

72       The shape of the matrix V and the storage of the vectors  which  define
73       the  H(i) is best illustrated by the following example with n = 5 and k
74       = 3. The elements equal to 1 are not stored;  the  corresponding  array
75       elements  are  modified  but restored on exit. The rest of the array is
76       not used.
77       DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
78                    V = (  1       )                 V = (  1 v1 v1 v1 v1 )
79                        ( v1  1    )                     (     1 v2 v2 v2 )
80                        ( v1 v2  1 )                     (        1 v3 v3 )
81                        ( v1 v2 v3 )
82                        ( v1 v2 v3 )
83       DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
84                    V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
85                        ( v1 v2 v3 )                     ( v2 v2 v2  1    )
86                        (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
87                        (     1 v3 )
88                        (        1 )
89
90
91
92 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       DLARFT(1)
Impressum