1DLASR(1)            LAPACK auxiliary routine (version 3.2)            DLASR(1)
2
3
4

NAME

6       DLASR - applies a sequence of plane rotations to a real matrix A,
7

SYNOPSIS

9       SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
10
11           CHARACTER     DIRECT, PIVOT, SIDE
12
13           INTEGER       LDA, M, N
14
15           DOUBLE        PRECISION A( LDA, * ), C( * ), S( * )
16

PURPOSE

18       DLASR  applies  a  sequence of plane rotations to a real matrix A, from
19       either the left or the right.
20       When SIDE = 'L', the transformation takes the form
21          A := P*A
22       and when SIDE = 'R', the transformation takes the form
23          A := A*P**T
24       where P is an orthogonal matrix consisting of a  sequence  of  z  plane
25       rotations,  with  z  = M when SIDE = 'L' and z = N when SIDE = 'R', and
26       P**T is the transpose of P.
27       When DIRECT = 'F' (Forward sequence), then
28          P = P(z-1) * ... * P(2) * P(1)
29       and when DIRECT = 'B' (Backward sequence), then
30          P = P(1) * P(2) * ... * P(z-1)
31       where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
32          R(k) = (  c(k)  s(k) )
33               = ( -s(k)  c(k) ).
34       When PIVOT = 'V' (Variable pivot), the rotation is  performed  for  the
35       plane (k,k+1), i.e., P(k) has the form
36          P(k) = (  1                                            )
37                 (       ...                                     )
38                 (              1                                )
39                 (                   c(k)  s(k)                  )
40                 (                  -s(k)  c(k)                  )
41                 (                                1              )
42                 (                                     ...       )
43                 (                                            1  )
44       where  R(k)  appears as a rank-2 modification to the identity matrix in
45       rows and columns k and k+1.
46       When PIVOT = 'T' (Top pivot), the rotation is performed for  the  plane
47       (1,k+1), so P(k) has the form
48          P(k) = (  c(k)                    s(k)                 )
49                 (         1                                     )
50                 (              ...                              )
51                 (                     1                         )
52                 ( -s(k)                    c(k)                 )
53                 (                                 1             )
54                 (                                      ...      )
55                 (                                             1 )
56       where R(k) appears in rows and columns 1 and k+1.
57       Similarly,  when  PIVOT = 'B' (Bottom pivot), the rotation is performed
58       for the plane (k,z), giving P(k) the form
59          P(k) = ( 1                                             )
60                 (      ...                                      )
61                 (             1                                 )
62                 (                  c(k)                    s(k) )
63                 (                         1                     )
64                 (                              ...              )
65                 (                                     1         )
66                 (                 -s(k)                    c(k) )
67       where R(k) appears in rows and columns k and z.  The rotations are per‐
68       formed without ever forming P(k) explicitly.
69

ARGUMENTS

71       SIDE    (input) CHARACTER*1
72               Specifies  whether  the plane rotation matrix P is applied to A
73               on the left or the right.  = 'L':  Left, compute A := P*A
74               = 'R':  Right, compute A:= A*P**T
75
76       PIVOT   (input) CHARACTER*1
77               Specifies the plane for which P(k) is a plane rotation  matrix.
78               = 'V':  Variable pivot, the plane (k,k+1)
79               = 'T':  Top pivot, the plane (1,k+1)
80               = 'B':  Bottom pivot, the plane (k,z)
81
82       DIRECT  (input) CHARACTER*1
83               Specifies  whether P is a forward or backward sequence of plane
84               rotations.  = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
85               = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
86
87       M       (input) INTEGER
88               The number of rows of the matrix A.  If m <=  1,  an  immediate
89               return is effected.
90
91       N       (input) INTEGER
92               The number of columns of the matrix A.  If n <= 1, an immediate
93               return is effected.
94
95       C       (input) DOUBLE PRECISION array, dimension
96               (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The cosines c(k) of the
97               plane rotations.
98
99       S       (input) DOUBLE PRECISION array, dimension
100               (M-1)  if  SIDE = 'L' (N-1) if SIDE = 'R' The sines s(k) of the
101               plane rotations.  The 2-by-2 plane rotation part of the  matrix
102               P(k),  R(k),  has the form R(k) = (  c(k)  s(k) ) ( -s(k)  c(k)
103               ).
104
105       A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
106               The M-by-N matrix A.  On exit, A is overwritten by P*A if  SIDE
107               = 'R' or by A*P**T if SIDE = 'L'.
108
109       LDA     (input) INTEGER
110               The leading dimension of the array A.  LDA >= max(1,M).
111
112
113
114 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                        DLASR(1)
Impressum