1DOPGTR(1)                LAPACK routine (version 3.2)                DOPGTR(1)
2
3
4

NAME

6       DOPGTR  -  generates a real orthogonal matrix Q which is defined as the
7       product of n-1 elementary reflectors H(i) of order n,  as  returned  by
8       DSPTRD using packed storage
9

SYNOPSIS

11       SUBROUTINE DOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
12
13           CHARACTER      UPLO
14
15           INTEGER        INFO, LDQ, N
16
17           DOUBLE         PRECISION AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
18

PURPOSE

20       DOPGTR  generates  a  real  orthogonal matrix Q which is defined as the
21       product of n-1 elementary reflectors H(i) of order n,  as  returned  by
22       DSPTRD using packed storage: if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
23       if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
24

ARGUMENTS

26       UPLO    (input) CHARACTER*1
27               = 'U': Upper triangular packed storage used in previous call to
28               DSPTRD; = 'L': Lower triangular packed storage used in previous
29               call to DSPTRD.
30
31       N       (input) INTEGER
32               The order of the matrix Q. N >= 0.
33
34       AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
35               The vectors which define the elementary reflectors, as returned
36               by DSPTRD.
37
38       TAU     (input) DOUBLE PRECISION array, dimension (N-1)
39               TAU(i) must contain the scalar factor of the elementary reflecā€
40               tor H(i), as returned by DSPTRD.
41
42       Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
43               The N-by-N orthogonal matrix Q.
44
45       LDQ     (input) INTEGER
46               The leading dimension of the array Q. LDQ >= max(1,N).
47
48       WORK    (workspace) DOUBLE PRECISION array, dimension (N-1)
49
50       INFO    (output) INTEGER
51               = 0:  successful exit
52               < 0:  if INFO = -i, the i-th argument had an illegal value
53
54
55
56 LAPACK routine (version 3.2)    November 2008                       DOPGTR(1)
Impressum