1DSBEVX(1)             LAPACK driver routine (version 3.2)            DSBEVX(1)
2
3
4

NAME

6       DSBEVX - computes selected eigenvalues and, optionally, eigenvectors of
7       a real symmetric band matrix A
8

SYNOPSIS

10       SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,  VU,
11                          IL,  IU,  ABSTOL,  M, W, Z, LDZ, WORK, IWORK, IFAIL,
12                          INFO )
13
14           CHARACTER      JOBZ, RANGE, UPLO
15
16           INTEGER        IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
17
18           DOUBLE         PRECISION ABSTOL, VL, VU
19
20           INTEGER        IFAIL( * ), IWORK( * )
21
22           DOUBLE         PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ),  WORK(
23                          * ), Z( LDZ, * )
24

PURPOSE

26       DSBEVX computes selected eigenvalues and, optionally, eigenvectors of a
27       real symmetric band matrix A.   Eigenvalues  and  eigenvectors  can  be
28       selected  by  specifying either a range of values or a range of indices
29       for the desired eigenvalues.
30

ARGUMENTS

32       JOBZ    (input) CHARACTER*1
33               = 'N':  Compute eigenvalues only;
34               = 'V':  Compute eigenvalues and eigenvectors.
35
36       RANGE   (input) CHARACTER*1
37               = 'A': all eigenvalues will be found;
38               = 'V': all eigenvalues in the half-open interval  (VL,VU]  will
39               be  found;  =  'I': the IL-th through IU-th eigenvalues will be
40               found.
41
42       UPLO    (input) CHARACTER*1
43               = 'U':  Upper triangle of A is stored;
44               = 'L':  Lower triangle of A is stored.
45
46       N       (input) INTEGER
47               The order of the matrix A.  N >= 0.
48
49       KD      (input) INTEGER
50               The number of superdiagonals of the matrix A if UPLO = 'U',  or
51               the number of subdiagonals if UPLO = 'L'.  KD >= 0.
52
53       AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
54               On  entry,  the  upper  or lower triangle of the symmetric band
55               matrix A, stored in the first KD+1 rows of the array.  The j-th
56               column  of  A  is  stored in the j-th column of the array AB as
57               follows: if UPLO = 'U', AB(kd+1+i-j,j) =  A(i,j)  for  max(1,j-
58               kd)<=i<=j;   if   UPLO  =  'L',  AB(1+i-j,j)     =  A(i,j)  for
59               j<=i<=min(n,j+kd).  On exit, AB is overwritten by values gener‐
60               ated  during the reduction to tridiagonal form.  If UPLO = 'U',
61               the first superdiagonal and the  diagonal  of  the  tridiagonal
62               matrix  T are returned in rows KD and KD+1 of AB, and if UPLO =
63               'L', the diagonal and first subdiagonal of T  are  returned  in
64               the first two rows of AB.
65
66       LDAB    (input) INTEGER
67               The leading dimension of the array AB.  LDAB >= KD + 1.
68
69       Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
70               If  JOBZ = 'V', the N-by-N orthogonal matrix used in the reduc‐
71               tion to tridiagonal form.  If JOBZ = 'N', the array  Q  is  not
72               referenced.
73
74       LDQ     (input) INTEGER
75               The  leading dimension of the array Q.  If JOBZ = 'V', then LDQ
76               >= max(1,N).
77
78       VL      (input) DOUBLE PRECISION
79               VU      (input) DOUBLE PRECISION If RANGE='V',  the  lower  and
80               upper bounds of the interval to be searched for eigenvalues. VL
81               < VU.  Not referenced if RANGE = 'A' or 'I'.
82
83       IL      (input) INTEGER
84               IU      (input) INTEGER If RANGE='I', the indices (in ascending
85               order)  of the smallest and largest eigenvalues to be returned.
86               1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   Not
87               referenced if RANGE = 'A' or 'V'.
88
89       ABSTOL  (input) DOUBLE PRECISION
90               The  absolute error tolerance for the eigenvalues.  An approxi‐
91               mate eigenvalue is accepted as converged when it is  determined
92               to  lie  in  an  interval  [a,b] of width less than or equal to
93               ABSTOL + EPS *   max( |a|,|b| ) , where EPS is the machine pre‐
94               cision.  If ABSTOL is less than or equal to zero, then  EPS*|T|
95               will be used in its place, where  |T|  is  the  1-norm  of  the
96               tridiagonal matrix obtained by reducing AB to tridiagonal form.
97               Eigenvalues will be computed most accurately when ABSTOL is set
98               to  twice  the underflow threshold 2*DLAMCH('S'), not zero.  If
99               this routine returns with INFO>0, indicating that  some  eigen‐
100               vectors  did not converge, try setting ABSTOL to 2*DLAMCH('S').
101               See "Computing Small Singular  Values  of  Bidiagonal  Matrices
102               with  Guaranteed  High Relative Accuracy," by Demmel and Kahan,
103               LAPACK Working Note #3.
104
105       M       (output) INTEGER
106               The total number of eigenvalues found.  0 <= M <= N.  If  RANGE
107               = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
108
109       W       (output) DOUBLE PRECISION array, dimension (N)
110               The  first  M  elements  contain  the  selected  eigenvalues in
111               ascending order.
112
113       Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
114               If JOBZ = 'V', then if INFO = 0, the first M columns of Z  con‐
115               tain the orthonormal eigenvectors of the matrix A corresponding
116               to the selected eigenvalues, with the i-th column of Z  holding
117               the  eigenvector associated with W(i).  If an eigenvector fails
118               to converge, then that column of Z contains the latest approxi‐
119               mation  to the eigenvector, and the index of the eigenvector is
120               returned in IFAIL.  If JOBZ = 'N', then Z  is  not  referenced.
121               Note:  the  user must ensure that at least max(1,M) columns are
122               supplied in the array Z; if RANGE = 'V', the exact value  of  M
123               is not known in advance and an upper bound must be used.
124
125       LDZ     (input) INTEGER
126               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
127               'V', LDZ >= max(1,N).
128
129       WORK    (workspace) DOUBLE PRECISION array, dimension (7*N)
130
131       IWORK   (workspace) INTEGER array, dimension (5*N)
132
133       IFAIL   (output) INTEGER array, dimension (N)
134               If JOBZ = 'V', then if INFO = 0, the first M elements of  IFAIL
135               are  zero.  If INFO > 0, then IFAIL contains the indices of the
136               eigenvectors that failed to converge.   If  JOBZ  =  'N',  then
137               IFAIL is not referenced.
138
139       INFO    (output) INTEGER
140               = 0:  successful exit.
141               < 0:  if INFO = -i, the i-th argument had an illegal value.
142               >  0:   if  INFO  =  i, then i eigenvectors failed to converge.
143               Their indices are stored in array IFAIL.
144
145
146
147 LAPACK driver routine (version 3.N2o)vember 2008                       DSBEVX(1)
Impressum