1DSTEIN(1)                LAPACK routine (version 3.2)                DSTEIN(1)
2
3
4

NAME

6       DSTEIN  -  computes  the  eigenvectors  of a real symmetric tridiagonal
7       matrix T corresponding to specified eigenvalues, using  inverse  itera‐
8       tion
9

SYNOPSIS

11       SUBROUTINE DSTEIN( N,  D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
12                          IFAIL, INFO )
13
14           INTEGER        INFO, LDZ, M, N
15
16           INTEGER        IBLOCK( * ), IFAIL( * ), ISPLIT( * ), IWORK( * )
17
18           DOUBLE         PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ,
19                          * )
20

PURPOSE

22       DSTEIN computes the eigenvectors of a real symmetric tridiagonal matrix
23       T corresponding to specified eigenvalues, using inverse iteration.  The
24       maximum  number of iterations allowed for each eigenvector is specified
25       by an internal parameter MAXITS (currently set to 5).
26

ARGUMENTS

28       N       (input) INTEGER
29               The order of the matrix.  N >= 0.
30
31       D       (input) DOUBLE PRECISION array, dimension (N)
32               The n diagonal elements of the tridiagonal matrix T.
33
34       E       (input) DOUBLE PRECISION array, dimension (N-1)
35               The (n-1) subdiagonal elements of the tridiagonal matrix T,  in
36               elements 1 to N-1.
37
38       M       (input) INTEGER
39               The number of eigenvectors to be found.  0 <= M <= N.
40
41       W       (input) DOUBLE PRECISION array, dimension (N)
42               The  first  M  elements  of W contain the eigenvalues for which
43               eigenvectors are to be computed.   The  eigenvalues  should  be
44               grouped by split-off block and ordered from smallest to largest
45               within the block.  ( The output array W from DSTEBZ with  ORDER
46               = 'B' is expected here. )
47
48       IBLOCK  (input) INTEGER array, dimension (N)
49               The  submatrix indices associated with the corresponding eigen‐
50               values in W; IBLOCK(i)=1 if  eigenvalue  W(i)  belongs  to  the
51               first  submatrix from the top, =2 if W(i) belongs to the second
52               submatrix, etc.  ( The  output  array  IBLOCK  from  DSTEBZ  is
53               expected here. )
54
55       ISPLIT  (input) INTEGER array, dimension (N)
56               The  splitting  points,  at which T breaks up into submatrices.
57               The first submatrix consists of rows/columns 1 to ISPLIT( 1  ),
58               the  second  of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2 ),
59               etc.  ( The output array ISPLIT from DSTEBZ is expected here. )
60
61       Z       (output) DOUBLE PRECISION array, dimension (LDZ, M)
62               The computed eigenvectors.  The eigenvector associated with the
63               eigenvalue  W(i) is stored in the i-th column of Z.  Any vector
64               which fails to converge is set to  its  current  iterate  after
65               MAXITS iterations.
66
67       LDZ     (input) INTEGER
68               The leading dimension of the array Z.  LDZ >= max(1,N).
69
70       WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
71
72       IWORK   (workspace) INTEGER array, dimension (N)
73
74       IFAIL   (output) INTEGER array, dimension (M)
75               On normal exit, all elements of IFAIL are zero.  If one or more
76               eigenvectors fail to converge  after  MAXITS  iterations,  then
77               their indices are stored in array IFAIL.
78
79       INFO    (output) INTEGER
80               = 0: successful exit.
81               < 0: if INFO = -i, the i-th argument had an illegal value
82               >  0:  if  INFO  = i, then i eigenvectors failed to converge in
83               MAXITS iterations.  Their indices are stored in array IFAIL.
84

PARAMETERS

86       MAXITS  INTEGER, default = 5
87               The maximum number of iterations performed.
88
89       EXTRA   INTEGER, default = 2
90               The number of iterations performed after norm growth  criterion
91               is satisfied, should be at least 1.
92
93
94
95 LAPACK routine (version 3.2)    November 2008                       DSTEIN(1)
Impressum