1DTBRFS(1)                LAPACK routine (version 3.2)                DTBRFS(1)
2
3
4

NAME

6       DTBRFS  -  provides  error  bounds and backward error estimates for the
7       solution to a system of linear equations with a triangular band coeffi‐
8       cient matrix
9

SYNOPSIS

11       SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X,
12                          LDX, FERR, BERR, WORK, IWORK, INFO )
13
14           CHARACTER      DIAG, TRANS, UPLO
15
16           INTEGER        INFO, KD, LDAB, LDB, LDX, N, NRHS
17
18           INTEGER        IWORK( * )
19
20           DOUBLE         PRECISION AB( LDAB, * ), B( LDB, *  ),  BERR(  *  ),
21                          FERR( * ), WORK( * ), X( LDX, * )
22

PURPOSE

24       DTBRFS provides error bounds and backward error estimates for the solu‐
25       tion to a system of linear equations with a triangular band coefficient
26       matrix.  The solution matrix X must be computed by DTBTRS or some other
27       means before entering this  routine.   DTBRFS  does  not  do  iterative
28       refinement because doing so cannot improve the backward error.
29

ARGUMENTS

31       UPLO    (input) CHARACTER*1
32               = 'U':  A is upper triangular;
33               = 'L':  A is lower triangular.
34
35       TRANS   (input) CHARACTER*1
36               Specifies the form of the system of equations:
37               = 'N':  A * X = B  (No transpose)
38               = 'T':  A**T * X = B  (Transpose)
39               = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
40
41       DIAG    (input) CHARACTER*1
42               = 'N':  A is non-unit triangular;
43               = 'U':  A is unit triangular.
44
45       N       (input) INTEGER
46               The order of the matrix A.  N >= 0.
47
48       KD      (input) INTEGER
49               The  number of superdiagonals or subdiagonals of the triangular
50               band matrix A.  KD >= 0.
51
52       NRHS    (input) INTEGER
53               The number of right hand sides, i.e., the number of columns  of
54               the matrices B and X.  NRHS >= 0.
55
56       AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
57               The  upper  or  lower  triangular  band matrix A, stored in the
58               first kd+1 rows of the array. The j-th column of A is stored in
59               the  j-th  column  of  the  array AB as follows: if UPLO = 'U',
60               AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO  =  'L',
61               AB(1+i-j,j)     = A(i,j) for j<=i<=min(n,j+kd).  If DIAG = 'U',
62               the diagonal elements of A are not referenced and  are  assumed
63               to be 1.
64
65       LDAB    (input) INTEGER
66               The leading dimension of the array AB.  LDAB >= KD+1.
67
68       B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
69               The right hand side matrix B.
70
71       LDB     (input) INTEGER
72               The leading dimension of the array B.  LDB >= max(1,N).
73
74       X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
75               The solution matrix X.
76
77       LDX     (input) INTEGER
78               The leading dimension of the array X.  LDX >= max(1,N).
79
80       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
81               The estimated forward error bound for each solution vector X(j)
82               (the j-th column of the solution matrix X).  If  XTRUE  is  the
83               true  solution  corresponding  to X(j), FERR(j) is an estimated
84               upper bound for the magnitude of the largest element in (X(j) -
85               XTRUE) divided by the magnitude of the largest element in X(j).
86               The estimate is as reliable as the estimate for RCOND,  and  is
87               almost always a slight overestimate of the true error.
88
89       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
90               The componentwise relative backward error of each solution vec‐
91               tor X(j) (i.e., the smallest relative change in any element  of
92               A or B that makes X(j) an exact solution).
93
94       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
95
96       IWORK   (workspace) INTEGER array, dimension (N)
97
98       INFO    (output) INTEGER
99               = 0:  successful exit
100               < 0:  if INFO = -i, the i-th argument had an illegal value
101
102
103
104 LAPACK routine (version 3.2)    November 2008                       DTBRFS(1)
Impressum