1SGEGS(1)              LAPACK driver routine (version 3.2)             SGEGS(1)
2
3
4

NAME

6       SGEGS - routine i deprecated and has been replaced by routine SGGES
7

SYNOPSIS

9       SUBROUTINE SGEGS( JOBVSL,  JOBVSR,  N,  A, LDA, B, LDB, ALPHAR, ALPHAI,
10                         BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, INFO )
11
12           CHARACTER     JOBVSL, JOBVSR
13
14           INTEGER       INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
15
16           REAL          A( LDA, * ), ALPHAI( * ), ALPHAR( * ), B( LDB,  *  ),
17                         BETA(  * ), VSL( LDVSL, * ), VSR( LDVSR, * ), WORK( *
18                         )
19

PURPOSE

21       This routine is deprecated and has  been  replaced  by  routine  SGGES.
22       SGEGS  computes the eigenvalues, real Schur form, and, optionally, left
23       and or/right Schur vectors of a real  matrix  pair  (A,B).   Given  two
24       square  matrices  A and B, the generalized real Schur factorization has
25       the form
26         A = Q*S*Z**T,  B = Q*T*Z**T
27       where Q and Z are orthogonal matrices, T is upper triangular, and S  is
28       an  upper  quasi-triangular  matrix  with  1-by-1  and  2-by-2 diagonal
29       blocks, the 2-by-2 blocks corresponding to complex conjugate  pairs  of
30       eigenvalues  of (A,B).  The columns of Q are the left Schur vectors and
31       the columns of Z are the right Schur vectors.
32       If only the eigenvalues of (A,B) are needed, the driver  routine  SGEGV
33       should be used instead.  See SGEGV for a description of the eigenvalues
34       of the generalized nonsymmetric eigenvalue problem (GNEP).
35

ARGUMENTS

37       JOBVSL  (input) CHARACTER*1
38               = 'N':  do not compute the left Schur vectors;
39               = 'V':  compute the left Schur vectors (returned in VSL).
40
41       JOBVSR  (input) CHARACTER*1
42               = 'N':  do not compute the right Schur vectors;
43               = 'V':  compute the right Schur vectors (returned in VSR).
44
45       N       (input) INTEGER
46               The order of the matrices A, B, VSL, and VSR.  N >= 0.
47
48       A       (input/output) REAL array, dimension (LDA, N)
49               On entry, the matrix A.  On exit,  the  upper  quasi-triangular
50               matrix S from the generalized real Schur factorization.
51
52       LDA     (input) INTEGER
53               The leading dimension of A.  LDA >= max(1,N).
54
55       B       (input/output) REAL array, dimension (LDB, N)
56               On entry, the matrix B.  On exit, the upper triangular matrix T
57               from the generalized real Schur factorization.
58
59       LDB     (input) INTEGER
60               The leading dimension of B.  LDB >= max(1,N).
61
62       ALPHAR  (output) REAL array, dimension (N)
63               The real parts of each scalar alpha defining an  eigenvalue  of
64               GNEP.
65
66       ALPHAI  (output) REAL array, dimension (N)
67               The imaginary parts of each scalar alpha defining an eigenvalue
68               of GNEP.  If ALPHAI(j) is zero, then  the  j-th  eigenvalue  is
69               real; if positive, then the j-th and (j+1)-st eigenvalues are a
70               complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
71
72       BETA    (output) REAL array, dimension (N)
73               The  scalars  beta  that  define  the  eigenvalues   of   GNEP.
74               Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta
75               = BETA(j) represent the j-th  eigenvalue  of  the  matrix  pair
76               (A,B),  in  one  of  the  forms  lambda  =  alpha/beta  or mu =
77               beta/alpha.  Since either  lambda  or  mu  may  overflow,  they
78               should not, in general, be computed.
79
80       VSL     (output) REAL array, dimension (LDVSL,N)
81               If  JOBVSL = 'V', the matrix of left Schur vectors Q.  Not ref‐
82               erenced if JOBVSL = 'N'.
83
84       LDVSL   (input) INTEGER
85               The leading dimension of the matrix VSL. LDVSL >=1, and if JOB‐
86               VSL = 'V', LDVSL >= N.
87
88       VSR     (output) REAL array, dimension (LDVSR,N)
89               If JOBVSR = 'V', the matrix of right Schur vectors Z.  Not ref‐
90               erenced if JOBVSR = 'N'.
91
92       LDVSR   (input) INTEGER
93               The leading dimension of the matrix VSR. LDVSR  >=  1,  and  if
94               JOBVSR = 'V', LDVSR >= N.
95
96       WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
97               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
98
99       LWORK   (input) INTEGER
100               The  dimension  of  the  array WORK.  LWORK >= max(1,4*N).  For
101               good performance, LWORK must generally be larger.   To  compute
102               the  optimal value of LWORK, call ILAENV to get blocksizes (for
103               SGEQRF, SORMQR, and SORGQR.)  Then compute: NB  -- MAX  of  the
104               blocksizes  for SGEQRF, SORMQR, and SORGQR The optimal LWORK is
105               2*N + N*(NB+1).  If LWORK =  -1,  then  a  workspace  query  is
106               assumed;  the  routine  only calculates the optimal size of the
107               WORK array, returns this value as the first entry of  the  WORK
108               array,  and  no  error  message  related  to LWORK is issued by
109               XERBLA.
110
111       INFO    (output) INTEGER
112               = 0:  successful exit
113               < 0:  if INFO = -i, the i-th argument had an illegal value.
114               = 1,...,N: The QZ iteration failed.  (A,B)  are  not  in  Schur
115               form,  but  ALPHAR(j), ALPHAI(j), and BETA(j) should be correct
116               for j=INFO+1,...,N.  > N:  errors that usually indicate  LAPACK
117               problems:
118               =N+1: error return from SGGBAL
119               =N+2: error return from SGEQRF
120               =N+3: error return from SORMQR
121               =N+4: error return from SORGQR
122               =N+5: error return from SGGHRD
123               =N+6:  error  return  from SHGEQZ (other than failed iteration)
124               =N+7: error return from SGGBAK (computing VSL)
125               =N+8: error return from SGGBAK (computing VSR)
126               =N+9: error return from SLASCL (various places)
127
128
129
130 LAPACK driver routine (version 3.N2o)vember 2008                        SGEGS(1)
Impressum