1SLANHS(1) LAPACK auxiliary routine (version 3.2) SLANHS(1)
2
3
4
6 SLANHS - returns the value of the one norm, or the Frobenius norm, or
7 the infinity norm, or the element of largest absolute value of a Hes‐
8 senberg matrix A
9
11 REAL FUNCTION SLANHS( NORM, N, A, LDA, WORK )
12
13 CHARACTER NORM
14
15 INTEGER LDA, N
16
17 REAL A( LDA, * ), WORK( * )
18
20 SLANHS returns the value of the one norm, or the Frobenius norm, or
21 the infinity norm, or the element of largest absolute value of a
22 Hessenberg matrix A.
23
25 SLANHS returns the value
26 SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
27 (
28 ( norm1(A), NORM = '1', 'O' or 'o'
29 (
30 ( normI(A), NORM = 'I' or 'i'
31 (
32 ( normF(A), NORM = 'F', 'f', 'E' or 'e' where
33 norm1 denotes the one norm of a matrix (maximum column sum), normI
34 denotes the infinity norm of a matrix (maximum row sum) and normF
35 denotes the Frobenius norm of a matrix (square root of sum of
36 squares). Note that max(abs(A(i,j))) is not a consistent matrix
37 norm.
38
40 NORM (input) CHARACTER*1
41 Specifies the value to be returned in SLANHS as described
42 above.
43
44 N (input) INTEGER
45 The order of the matrix A. N >= 0. When N = 0, SLANHS is set
46 to zero.
47
48 A (input) REAL array, dimension (LDA,N)
49 The n by n upper Hessenberg matrix A; the part of A below the
50 first sub-diagonal is not referenced.
51
52 LDA (input) INTEGER
53 The leading dimension of the array A. LDA >= max(N,1).
54
55 WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
56 where LWORK >= N when NORM = 'I'; otherwise, WORK is not refer‐
57 enced.
58
59
60
61 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 SLANHS(1)