1ZGBBRD(1)                LAPACK routine (version 3.2)                ZGBBRD(1)
2
3
4

NAME

6       ZGBBRD  -  reduces a complex general m-by-n band matrix A to real upper
7       bidiagonal form B by a unitary transformation
8

SYNOPSIS

10       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT,
11                          LDPT, C, LDC, WORK, RWORK, INFO )
12
13           CHARACTER      VECT
14
15           INTEGER        INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
16
17           DOUBLE         PRECISION D( * ), E( * ), RWORK( * )
18
19           COMPLEX*16     AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), Q( LDQ, *
20                          ), WORK( * )
21

PURPOSE

23       ZGBBRD reduces a complex general m-by-n band matrix  A  to  real  upper
24       bidiagonal  form  B  by  a unitary transformation: Q' * A * P = B.  The
25       routine computes B, and optionally forms Q or P', or computes Q'*C  for
26       a given matrix C.
27

ARGUMENTS

29       VECT    (input) CHARACTER*1
30               Specifies  whether  or  not  the  matrices  Q  and P' are to be
31               formed.  = 'N': do not form Q or P';
32               = 'Q': form Q only;
33               = 'P': form P' only;
34               = 'B': form both.
35
36       M       (input) INTEGER
37               The number of rows of the matrix A.  M >= 0.
38
39       N       (input) INTEGER
40               The number of columns of the matrix A.  N >= 0.
41
42       NCC     (input) INTEGER
43               The number of columns of the matrix C.  NCC >= 0.
44
45       KL      (input) INTEGER
46               The number of subdiagonals of the matrix A. KL >= 0.
47
48       KU      (input) INTEGER
49               The number of superdiagonals of the matrix A. KU >= 0.
50
51       AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
52               On entry, the m-by-n  band  matrix  A,  stored  in  rows  1  to
53               KL+KU+1.  The  j-th column of A is stored in the j-th column of
54               the array AB as follows: AB(ku+1+i-j,j) = A(i,j)  for  max(1,j-
55               ku)<=i<=min(m,j+kl).   On exit, A is overwritten by values gen‐
56               erated during the reduction.
57
58       LDAB    (input) INTEGER
59               The leading dimension of the array A. LDAB >= KL+KU+1.
60
61       D       (output) DOUBLE PRECISION array, dimension (min(M,N))
62               The diagonal elements of the bidiagonal matrix B.
63
64       E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
65               The superdiagonal elements of the bidiagonal matrix B.
66
67       Q       (output) COMPLEX*16 array, dimension (LDQ,M)
68               If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.  If  VECT  =
69               'N' or 'P', the array Q is not referenced.
70
71       LDQ     (input) INTEGER
72               The  leading dimension of the array Q.  LDQ >= max(1,M) if VECT
73               = 'Q' or 'B'; LDQ >= 1 otherwise.
74
75       PT      (output) COMPLEX*16 array, dimension (LDPT,N)
76               If VECT = 'P' or 'B', the n-by-n unitary matrix P'.  If VECT  =
77               'N' or 'Q', the array PT is not referenced.
78
79       LDPT    (input) INTEGER
80               The  leading  dimension  of  the array PT.  LDPT >= max(1,N) if
81               VECT = 'P' or 'B'; LDPT >= 1 otherwise.
82
83       C       (input/output) COMPLEX*16 array, dimension (LDC,NCC)
84               On entry, an m-by-ncc matrix C.  On exit, C is  overwritten  by
85               Q'*C.  C is not referenced if NCC = 0.
86
87       LDC     (input) INTEGER
88               The leading dimension of the array C.  LDC >= max(1,M) if NCC >
89               0; LDC >= 1 if NCC = 0.
90
91       WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
92
93       RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N))
94
95       INFO    (output) INTEGER
96               = 0:  successful exit.
97               < 0:  if INFO = -i, the i-th argument had an illegal value.
98
99
100
101 LAPACK routine (version 3.2)    November 2008                       ZGBBRD(1)
Impressum