1ZGEGS(1)              LAPACK driver routine (version 3.2)             ZGEGS(1)
2
3
4

NAME

6       ZGEGS - routine i deprecated and has been replaced by routine ZGGES
7

SYNOPSIS

9       SUBROUTINE ZGEGS( JOBVSL,  JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
10                         LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, INFO )
11
12           CHARACTER     JOBVSL, JOBVSR
13
14           INTEGER       INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
15
16           DOUBLE        PRECISION RWORK( * )
17
18           COMPLEX*16    A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), VSL(
19                         LDVSL, * ), VSR( LDVSR, * ), WORK( * )
20

PURPOSE

22       This  routine  is  deprecated  and  has been replaced by routine ZGGES.
23       ZGEGS computes the eigenvalues, Schur form, and, optionally,  the  left
24       and  or/right  Schur vectors of a complex matrix pair (A,B).  Given two
25       square matrices A and B, the generalized Schur
26       factorization has the form
27          A = Q*S*Z**H,  B = Q*T*Z**H
28       where Q and Z are unitary matrices and S and T  are  upper  triangular.
29       The columns of Q are the left Schur vectors
30       and the columns of Z are the right Schur vectors.
31       If  only  the eigenvalues of (A,B) are needed, the driver routine ZGEGV
32       should be used instead.  See ZGEGV for a description of the eigenvalues
33       of the generalized nonsymmetric eigenvalue problem (GNEP).
34

ARGUMENTS

36       JOBVSL   (input) CHARACTER*1
37                = 'N':  do not compute the left Schur vectors;
38                = 'V':  compute the left Schur vectors (returned in VSL).
39
40       JOBVSR   (input) CHARACTER*1
41                = 'N':  do not compute the right Schur vectors;
42                = 'V':  compute the right Schur vectors (returned in VSR).
43
44       N       (input) INTEGER
45               The order of the matrices A, B, VSL, and VSR.  N >= 0.
46
47       A       (input/output) COMPLEX*16 array, dimension (LDA, N)
48               On entry, the matrix A.  On exit, the upper triangular matrix S
49               from the generalized Schur factorization.
50
51       LDA     (input) INTEGER
52               The leading dimension of A.  LDA >= max(1,N).
53
54       B       (input/output) COMPLEX*16 array, dimension (LDB, N)
55               On entry, the matrix B.  On exit, the upper triangular matrix T
56               from the generalized Schur factorization.
57
58       LDB     (input) INTEGER
59               The leading dimension of B.  LDB >= max(1,N).
60
61       ALPHA   (output) COMPLEX*16 array, dimension (N)
62               The  complex scalars alpha that define the eigenvalues of GNEP.
63               ALPHA(j) = S(j,j), the diagonal element of the Schur form of A.
64
65       BETA    (output) COMPLEX*16 array, dimension (N)
66               The non-negative real scalars beta that define the  eigenvalues
67               of  GNEP.  BETA(j) = T(j,j), the diagonal element of the trian‐
68               gular factor T.  Together, the quantities alpha = ALPHA(j)  and
69               beta = BETA(j) represent the j-th eigenvalue of the matrix pair
70               (A,B), in one  of  the  forms  lambda  =  alpha/beta  or  mu  =
71               beta/alpha.   Since  either  lambda  or  mu  may overflow, they
72               should not, in general, be computed.
73
74       VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
75               If JOBVSL = 'V', the matrix of left Schur vectors Q.  Not  ref‐
76               erenced if JOBVSL = 'N'.
77
78       LDVSL   (input) INTEGER
79               The  leading  dimension  of  the matrix VSL. LDVSL >= 1, and if
80               JOBVSL = 'V', LDVSL >= N.
81
82       VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
83               If JOBVSR = 'V', the matrix of right Schur vectors Z.  Not ref‐
84               erenced if JOBVSR = 'N'.
85
86       LDVSR   (input) INTEGER
87               The  leading  dimension  of  the matrix VSR. LDVSR >= 1, and if
88               JOBVSR = 'V', LDVSR >= N.
89
90       WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
91               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
92
93       LWORK   (input) INTEGER
94               The dimension of the array WORK.   LWORK  >=  max(1,2*N).   For
95               good  performance,  LWORK must generally be larger.  To compute
96               the optimal value of LWORK, call ILAENV to get blocksizes  (for
97               ZGEQRF,  ZUNMQR,  and CUNGQR.)  Then compute: NB  -- MAX of the
98               blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; the optimal LWORK is
99               N*(NB+1).   If  LWORK  = -1, then a workspace query is assumed;
100               the routine only calculates the optimal size of the WORK array,
101               returns this value as the first entry of the WORK array, and no
102               error message related to LWORK is issued by XERBLA.
103
104       RWORK   (workspace) DOUBLE PRECISION array, dimension (3*N)
105
106       INFO    (output) INTEGER
107               = 0:  successful exit
108               < 0:  if INFO = -i, the i-th argument had an illegal value.
109               =1,...,N: The QZ iteration failed.   (A,B)  are  not  in  Schur
110               form,   but   ALPHA(j)   and  BETA(j)  should  be  correct  for
111               j=INFO+1,...,N.  > N:   errors  that  usually  indicate  LAPACK
112               problems:
113               =N+1: error return from ZGGBAL
114               =N+2: error return from ZGEQRF
115               =N+3: error return from ZUNMQR
116               =N+4: error return from ZUNGQR
117               =N+5: error return from ZGGHRD
118               =N+6:  error  return  from ZHGEQZ (other than failed iteration)
119               =N+7: error return from ZGGBAK (computing VSL)
120               =N+8: error return from ZGGBAK (computing VSR)
121               =N+9: error return from ZLASCL (various places)
122
123
124
125 LAPACK driver routine (version 3.N2o)vember 2008                        ZGEGS(1)
Impressum