1ZGTTRS(1) LAPACK routine (version 3.2) ZGTTRS(1)
2
3
4
6 ZGTTRS - solves one of the systems of equations A * X = B, A**T * X =
7 B, or A**H * X = B,
8
10 SUBROUTINE ZGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO )
11
12 CHARACTER TRANS
13
14 INTEGER INFO, LDB, N, NRHS
15
16 INTEGER IPIV( * )
17
18 COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
19
21 ZGTTRS solves one of the systems of equations
22 A * X = B, A**T * X = B, or A**H * X = B, with a tridiagonal
23 matrix A using the LU factorization computed by ZGTTRF.
24
26 TRANS (input) CHARACTER*1
27 Specifies the form of the system of equations. = 'N': A * X =
28 B (No transpose)
29 = 'T': A**T * X = B (Transpose)
30 = 'C': A**H * X = B (Conjugate transpose)
31
32 N (input) INTEGER
33 The order of the matrix A.
34
35 NRHS (input) INTEGER
36 The number of right hand sides, i.e., the number of columns of
37 the matrix B. NRHS >= 0.
38
39 DL (input) COMPLEX*16 array, dimension (N-1)
40 The (n-1) multipliers that define the matrix L from the LU fac‐
41 torization of A.
42
43 D (input) COMPLEX*16 array, dimension (N)
44 The n diagonal elements of the upper triangular matrix U from
45 the LU factorization of A.
46
47 DU (input) COMPLEX*16 array, dimension (N-1)
48 The (n-1) elements of the first super-diagonal of U.
49
50 DU2 (input) COMPLEX*16 array, dimension (N-2)
51 The (n-2) elements of the second super-diagonal of U.
52
53 IPIV (input) INTEGER array, dimension (N)
54 The pivot indices; for 1 <= i <= n, row i of the matrix was
55 interchanged with row IPIV(i). IPIV(i) will always be either i
56 or i+1; IPIV(i) = i indicates a row interchange was not
57 required.
58
59 B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
60 On entry, the matrix of right hand side vectors B. On exit, B
61 is overwritten by the solution vectors X.
62
63 LDB (input) INTEGER
64 The leading dimension of the array B. LDB >= max(1,N).
65
66 INFO (output) INTEGER
67 = 0: successful exit
68 < 0: if INFO = -k, the k-th argument had an illegal value
69
70
71
72 LAPACK routine (version 3.2) November 2008 ZGTTRS(1)