1ZHBEVX(1)             LAPACK driver routine (version 3.2)            ZHBEVX(1)
2
3
4

NAME

6       ZHBEVX - computes selected eigenvalues and, optionally, eigenvectors of
7       a complex Hermitian band matrix A
8

SYNOPSIS

10       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,  VU,
11                          IL,  IU,  ABSTOL,  M, W, Z, LDZ, WORK, RWORK, IWORK,
12                          IFAIL, INFO )
13
14           CHARACTER      JOBZ, RANGE, UPLO
15
16           INTEGER        IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
17
18           DOUBLE         PRECISION ABSTOL, VL, VU
19
20           INTEGER        IFAIL( * ), IWORK( * )
21
22           DOUBLE         PRECISION RWORK( * ), W( * )
23
24           COMPLEX*16     AB( LDAB, * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
25

PURPOSE

27       ZHBEVX computes selected eigenvalues and, optionally, eigenvectors of a
28       complex  Hermitian  band matrix A.  Eigenvalues and eigenvectors can be
29       selected by specifying either a range of values or a range  of  indices
30       for the desired eigenvalues.
31

ARGUMENTS

33       JOBZ    (input) CHARACTER*1
34               = 'N':  Compute eigenvalues only;
35               = 'V':  Compute eigenvalues and eigenvectors.
36
37       RANGE   (input) CHARACTER*1
38               = 'A': all eigenvalues will be found;
39               =  'V':  all eigenvalues in the half-open interval (VL,VU] will
40               be found; = 'I': the IL-th through IU-th  eigenvalues  will  be
41               found.
42
43       UPLO    (input) CHARACTER*1
44               = 'U':  Upper triangle of A is stored;
45               = 'L':  Lower triangle of A is stored.
46
47       N       (input) INTEGER
48               The order of the matrix A.  N >= 0.
49
50       KD      (input) INTEGER
51               The  number of superdiagonals of the matrix A if UPLO = 'U', or
52               the number of subdiagonals if UPLO = 'L'.  KD >= 0.
53
54       AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
55               On entry, the upper or lower triangle  of  the  Hermitian  band
56               matrix A, stored in the first KD+1 rows of the array.  The j-th
57               column of A is stored in the j-th column of  the  array  AB  as
58               follows:  if  UPLO  = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
59               kd)<=i<=j;  if  UPLO  =  'L',  AB(1+i-j,j)     =   A(i,j)   for
60               j<=i<=min(n,j+kd).  On exit, AB is overwritten by values gener‐
61               ated during the reduction to tridiagonal form.
62
63       LDAB    (input) INTEGER
64               The leading dimension of the array AB.  LDAB >= KD + 1.
65
66       Q       (output) COMPLEX*16 array, dimension (LDQ, N)
67               If JOBZ = 'V', the N-by-N unitary matrix used in the  reduction
68               to  tridiagonal form.  If JOBZ = 'N', the array Q is not refer‐
69               enced.
70
71       LDQ     (input) INTEGER
72               The leading dimension of the array Q.  If JOBZ = 'V', then  LDQ
73               >= max(1,N).
74
75       VL      (input) DOUBLE PRECISION
76               VU       (input)  DOUBLE  PRECISION If RANGE='V', the lower and
77               upper bounds of the interval to be searched for eigenvalues. VL
78               < VU.  Not referenced if RANGE = 'A' or 'I'.
79
80       IL      (input) INTEGER
81               IU      (input) INTEGER If RANGE='I', the indices (in ascending
82               order) of the smallest and largest eigenvalues to be  returned.
83               1  <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.  Not
84               referenced if RANGE = 'A' or 'V'.
85
86       ABSTOL  (input) DOUBLE PRECISION
87               The absolute error tolerance for the eigenvalues.  An  approxi‐
88               mate  eigenvalue is accepted as converged when it is determined
89               to lie in an interval [a,b] of width  less  than  or  equal  to
90               ABSTOL + EPS *   max( |a|,|b| ) , where EPS is the machine pre‐
91               cision.  If ABSTOL is less than or equal to zero, then  EPS*|T|
92               will  be  used  in  its  place,  where |T| is the 1-norm of the
93               tridiagonal matrix obtained by reducing AB to tridiagonal form.
94               Eigenvalues will be computed most accurately when ABSTOL is set
95               to twice the underflow threshold 2*DLAMCH('S'), not  zero.   If
96               this  routine  returns with INFO>0, indicating that some eigen‐
97               vectors did not converge, try setting ABSTOL to  2*DLAMCH('S').
98               See  "Computing  Small  Singular  Values of Bidiagonal Matrices
99               with Guaranteed High Relative Accuracy," by Demmel  and  Kahan,
100               LAPACK Working Note #3.
101
102       M       (output) INTEGER
103               The  total number of eigenvalues found.  0 <= M <= N.  If RANGE
104               = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
105
106       W       (output) DOUBLE PRECISION array, dimension (N)
107               The first  M  elements  contain  the  selected  eigenvalues  in
108               ascending order.
109
110       Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
111               If  JOBZ = 'V', then if INFO = 0, the first M columns of Z con‐
112               tain the orthonormal eigenvectors of the matrix A corresponding
113               to  the selected eigenvalues, with the i-th column of Z holding
114               the eigenvector associated with W(i).  If an eigenvector  fails
115               to converge, then that column of Z contains the latest approxi‐
116               mation to the eigenvector, and the index of the eigenvector  is
117               returned  in  IFAIL.   If JOBZ = 'N', then Z is not referenced.
118               Note: the user must ensure that at least max(1,M)  columns  are
119               supplied  in  the array Z; if RANGE = 'V', the exact value of M
120               is not known in advance and an upper bound must be used.
121
122       LDZ     (input) INTEGER
123               The leading dimension of the array Z.  LDZ >= 1, and if JOBZ  =
124               'V', LDZ >= max(1,N).
125
126       WORK    (workspace) COMPLEX*16 array, dimension (N)
127
128       RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
129
130       IWORK   (workspace) INTEGER array, dimension (5*N)
131
132       IFAIL   (output) INTEGER array, dimension (N)
133               If  JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
134               are zero.  If INFO > 0, then IFAIL contains the indices of  the
135               eigenvectors  that  failed  to  converge.   If JOBZ = 'N', then
136               IFAIL is not referenced.
137
138       INFO    (output) INTEGER
139               = 0:  successful exit
140               < 0:  if INFO = -i, the i-th argument had an illegal value
141               > 0:  if INFO = i, then  i  eigenvectors  failed  to  converge.
142               Their indices are stored in array IFAIL.
143
144
145
146 LAPACK driver routine (version 3.N2o)vember 2008                       ZHBEVX(1)
Impressum