1ZHBTRD(1) LAPACK routine (version 3.2) ZHBTRD(1)
2
3
4
6 ZHBTRD - reduces a complex Hermitian band matrix A to real symmetric
7 tridiagonal form T by a unitary similarity transformation
8
10 SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
11 INFO )
12
13 CHARACTER UPLO, VECT
14
15 INTEGER INFO, KD, LDAB, LDQ, N
16
17 DOUBLE PRECISION D( * ), E( * )
18
19 COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * )
20
22 ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
23 tridiagonal form T by a unitary similarity transformation: Q**H * A * Q
24 = T.
25
27 VECT (input) CHARACTER*1
28 = 'N': do not form Q;
29 = 'V': form Q;
30 = 'U': update a matrix X, by forming X*Q.
31
32 UPLO (input) CHARACTER*1
33 = 'U': Upper triangle of A is stored;
34 = 'L': Lower triangle of A is stored.
35
36 N (input) INTEGER
37 The order of the matrix A. N >= 0.
38
39 KD (input) INTEGER
40 The number of superdiagonals of the matrix A if UPLO = 'U', or
41 the number of subdiagonals if UPLO = 'L'. KD >= 0.
42
43 AB (input/output) COMPLEX*16 array, dimension (LDAB,N)
44 On entry, the upper or lower triangle of the Hermitian band
45 matrix A, stored in the first KD+1 rows of the array. The j-th
46 column of A is stored in the j-th column of the array AB as
47 follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
48 kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for
49 j<=i<=min(n,j+kd). On exit, the diagonal elements of AB are
50 overwritten by the diagonal elements of the tridiagonal matrix
51 T; if KD > 0, the elements on the first superdiagonal (if UPLO
52 = 'U') or the first subdiagonal (if UPLO = 'L') are overwritten
53 by the off-diagonal elements of T; the rest of AB is overwrit‐
54 ten by values generated during the reduction.
55
56 LDAB (input) INTEGER
57 The leading dimension of the array AB. LDAB >= KD+1.
58
59 D (output) DOUBLE PRECISION array, dimension (N)
60 The diagonal elements of the tridiagonal matrix T.
61
62 E (output) DOUBLE PRECISION array, dimension (N-1)
63 The off-diagonal elements of the tridiagonal matrix T: E(i) =
64 T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
65
66 Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
67 On entry, if VECT = 'U', then Q must contain an N-by-N matrix
68 X; if VECT = 'N' or 'V', then Q need not be set. On exit: if
69 VECT = 'V', Q contains the N-by-N unitary matrix Q; if VECT =
70 'U', Q contains the product X*Q; if VECT = 'N', the array Q is
71 not referenced.
72
73 LDQ (input) INTEGER
74 The leading dimension of the array Q. LDQ >= 1, and LDQ >= N
75 if VECT = 'V' or 'U'.
76
77 WORK (workspace) COMPLEX*16 array, dimension (N)
78
79 INFO (output) INTEGER
80 = 0: successful exit
81 < 0: if INFO = -i, the i-th argument had an illegal value
82
84 Modified by Linda Kaufman, Bell Labs.
85
86
87
88 LAPACK routine (version 3.2) November 2008 ZHBTRD(1)