1ZHBTRD(1)                LAPACK routine (version 3.2)                ZHBTRD(1)
2
3
4

NAME

6       ZHBTRD  -  reduces  a complex Hermitian band matrix A to real symmetric
7       tridiagonal form T by a unitary similarity transformation
8

SYNOPSIS

10       SUBROUTINE ZHBTRD( VECT, UPLO, N, KD, AB, LDAB, D,  E,  Q,  LDQ,  WORK,
11                          INFO )
12
13           CHARACTER      UPLO, VECT
14
15           INTEGER        INFO, KD, LDAB, LDQ, N
16
17           DOUBLE         PRECISION D( * ), E( * )
18
19           COMPLEX*16     AB( LDAB, * ), Q( LDQ, * ), WORK( * )
20

PURPOSE

22       ZHBTRD  reduces  a  complex  Hermitian  band matrix A to real symmetric
23       tridiagonal form T by a unitary similarity transformation: Q**H * A * Q
24       = T.
25

ARGUMENTS

27       VECT    (input) CHARACTER*1
28               = 'N':  do not form Q;
29               = 'V':  form Q;
30               = 'U':  update a matrix X, by forming X*Q.
31
32       UPLO    (input) CHARACTER*1
33               = 'U':  Upper triangle of A is stored;
34               = 'L':  Lower triangle of A is stored.
35
36       N       (input) INTEGER
37               The order of the matrix A.  N >= 0.
38
39       KD      (input) INTEGER
40               The  number of superdiagonals of the matrix A if UPLO = 'U', or
41               the number of subdiagonals if UPLO = 'L'.  KD >= 0.
42
43       AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
44               On entry, the upper or lower triangle  of  the  Hermitian  band
45               matrix A, stored in the first KD+1 rows of the array.  The j-th
46               column of A is stored in the j-th column of  the  array  AB  as
47               follows:  if  UPLO  = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-
48               kd)<=i<=j;  if  UPLO  =  'L',  AB(1+i-j,j)     =   A(i,j)   for
49               j<=i<=min(n,j+kd).   On  exit,  the diagonal elements of AB are
50               overwritten by the diagonal elements of the tridiagonal  matrix
51               T;  if KD > 0, the elements on the first superdiagonal (if UPLO
52               = 'U') or the first subdiagonal (if UPLO = 'L') are overwritten
53               by  the off-diagonal elements of T; the rest of AB is overwrit‐
54               ten by values generated during the reduction.
55
56       LDAB    (input) INTEGER
57               The leading dimension of the array AB.  LDAB >= KD+1.
58
59       D       (output) DOUBLE PRECISION array, dimension (N)
60               The diagonal elements of the tridiagonal matrix T.
61
62       E       (output) DOUBLE PRECISION array, dimension (N-1)
63               The off-diagonal elements of the tridiagonal matrix T:  E(i)  =
64               T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
65
66       Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
67               On  entry,  if VECT = 'U', then Q must contain an N-by-N matrix
68               X; if VECT = 'N' or 'V', then Q need not be set.  On  exit:  if
69               VECT  =  'V', Q contains the N-by-N unitary matrix Q; if VECT =
70               'U', Q contains the product X*Q; if VECT = 'N', the array Q  is
71               not referenced.
72
73       LDQ     (input) INTEGER
74               The  leading  dimension of the array Q.  LDQ >= 1, and LDQ >= N
75               if VECT = 'V' or 'U'.
76
77       WORK    (workspace) COMPLEX*16 array, dimension (N)
78
79       INFO    (output) INTEGER
80               = 0:  successful exit
81               < 0:  if INFO = -i, the i-th argument had an illegal value
82

FURTHER DETAILS

84       Modified by Linda Kaufman, Bell Labs.
85
86
87
88 LAPACK routine (version 3.2)    November 2008                       ZHBTRD(1)
Impressum