1ZLALSA(1)                LAPACK routine (version 3.2)                ZLALSA(1)
2
3
4

NAME

6       ZLALSA - is an itermediate step in solving the least squares problem by
7       computing the SVD of the coefficient matrix in compact form (The singu‐
8       lar vectors are computed as products of simple orthorgonal matrices.)
9

SYNOPSIS

11       SUBROUTINE ZLALSA( ICOMPQ,  SMLSIZ,  N, NRHS, B, LDB, BX, LDBX, U, LDU,
12                          VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
13                          PERM, GIVNUM, C, S, RWORK, IWORK, INFO )
14
15           INTEGER        ICOMPQ,  INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, SML‐
16                          SIZ
17
18           INTEGER        GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),  K(  *
19                          ), PERM( LDGCOL, * )
20
21           DOUBLE         PRECISION  C(  *  ), DIFL( LDU, * ), DIFR( LDU, * ),
22                          GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), S(  *
23                          ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
24
25           COMPLEX*16     B( LDB, * ), BX( LDBX, * )
26

PURPOSE

28       ZLALSA  is  an itermediate step in solving the least squares problem by
29       computing the SVD of the coefficient matrix in compact form (The singu‐
30       lar  vectors are computed as products of simple orthorgonal matrices.).
31       If ICOMPQ = 0, ZLALSA applies the inverse of the left  singular  vector
32       matrix  of  an  upper  bidiagonal matrix to the right hand side; and if
33       ICOMPQ = 1, ZLALSA applies the right  singular  vector  matrix  to  the
34       right hand side. The singular vector matrices were generated in compact
35       form by ZLALSA.
36

ARGUMENTS

38       ICOMPQ (input) INTEGER Specifies whether the left or the right singular
39       vector matrix is involved.  = 0: Left singular vector matrix
40       =  1:  Right  singular vector matrix SMLSIZ (input) INTEGER The maximum
41       size of the subproblems at the bottom of the computation tree.
42
43       N      (input) INTEGER
44              The row and column dimensions of the upper bidiagonal matrix.
45
46       NRHS   (input) INTEGER
47              The number of columns of B and BX. NRHS must be at least 1.
48
49       B      (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )
50              On input, B contains the right hand sides of the  least  squares
51              problem in rows 1 through M.  On output, B contains the solution
52              X in rows 1 through N.
53
54       LDB    (input) INTEGER
55              The leading dimension of B in the calling subprogram.  LDB  must
56              be at least max(1,MAX( M, N ) ).
57
58       BX     (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
59              On  exit, the result of applying the left or right singular vec‐
60              tor matrix to B.
61
62       LDBX   (input) INTEGER
63              The leading dimension of BX.
64
65       U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
66              On entry, U contains the left singular vector  matrices  of  all
67              subproblems at the bottom level.
68
69       LDU    (input) INTEGER, LDU = > N.
70              The  leading  dimension  of  arrays  U,  VT,  DIFL, DIFR, POLES,
71              GIVNUM, and Z.
72
73       VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
74              On entry, VT' contains the right singular vector matrices of all
75              subproblems at the bottom level.
76
77       K      (input) INTEGER array, dimension ( N ).
78
79       DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
80              where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
81
82       DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
83              On  entry,  DIFL(*,  I)  and  DIFR(*, 2 * I -1) record distances
84              between singular values on the I-th level and singular values on
85              the  (I  -1)-th level, and DIFR(*, 2 * I) record the normalizing
86              factors of the right singular vectors matrices of subproblems on
87              I-th level.
88
89       Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
90              On  entry,  Z(1,  I)  contains  the components of the deflation-
91              adjusted updating row vector for subproblems on the I-th level.
92
93       POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
94              On entry, POLES(*, 2 * I -1: 2 * I) contains  the  new  and  old
95              singular  values  involved  in the secular equations on the I-th
96              level.  GIVPTR (input) INTEGER  array,  dimension  (  N  ).   On
97              entry,  GIVPTR(  I ) records the number of Givens rotations per‐
98              formed on the I-th problem  on  the  computation  tree.   GIVCOL
99              (input)  INTEGER  array,  dimension  (  LDGCOL,  2 * NLVL ).  On
100              entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the loca‐
101              tions  of  Givens  rotations  performed on the I-th level on the
102              computation tree.  LDGCOL (input) INTEGER, LDGCOL =  >  N.   The
103              leading dimension of arrays GIVCOL and PERM.
104
105       PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
106              On entry, PERM(*, I) records permutations done on the I-th level
107              of the computation tree.  GIVNUM (input) DOUBLE PRECISION array,
108              dimension  ( LDU, 2 * NLVL ).  On entry, GIVNUM(*, 2 *I -1 : 2 *
109              I) records the C- and S- values of Givens rotations performed on
110              the I-th level on the computation tree.
111
112       C      (input) DOUBLE PRECISION array, dimension ( N ).
113              On  entry, if the I-th subproblem is not square, C( I ) contains
114              the C-value of a Givens rotation related to the right null space
115              of the I-th subproblem.
116
117       S      (input) DOUBLE PRECISION array, dimension ( N ).
118              On  entry, if the I-th subproblem is not square, S( I ) contains
119              the S-value of a Givens rotation related to the right null space
120              of the I-th subproblem.
121
122       RWORK  (workspace) DOUBLE PRECISION array, dimension at least
123              max ( N, (SMLSZ+1)*NRHS*3 ).
124
125       IWORK  (workspace) INTEGER array.
126              The dimension must be at least 3 * N
127
128       INFO   (output) INTEGER
129              = 0:  successful exit.
130              < 0:  if INFO = -i, the i-th argument had an illegal value.
131

FURTHER DETAILS

133       Based on contributions by
134          Ming Gu and Ren-Cang Li, Computer Science Division, University of
135            California at Berkeley, USA
136          Osni Marques, LBNL/NERSC, USA
137
138
139
140 LAPACK routine (version 3.2)    November 2008                       ZLALSA(1)
Impressum