1ZLANHF(1)LAPACK routine (version 3.2)                                 ZLANHF(1)
2
3
4

NAME

6       ZLANHF  -  returns the value of the one norm, or the Frobenius norm, or
7       the infinity norm, or the element of largest absolute value of  a  com‐
8       plex Hermitian matrix A in RFP format
9

SYNOPSIS

11       DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )
12
13           CHARACTER    NORM, TRANSR, UPLO
14
15           INTEGER      N
16
17           DOUBLE       PRECISION WORK( 0: * )
18
19           COMPLEX*16   A( 0: * )
20

PURPOSE

22       ZLANHF   returns  the value of the one norm,  or the Frobenius norm, or
23       the  infinity norm,  or the  element of  largest absolute value   of  a
24       complex Hermitian matrix A in RFP format.
25

DESCRIPTION

27       ZLANHF returns the value
28          ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29                   (
30                   ( norm1(A),         NORM = '1', 'O' or 'o'
31                   (
32                   ( normI(A),         NORM = 'I' or 'i'
33                   (
34                   (  normF(A),          NORM  =  'F',  'f',  'E' or 'e' where
35       norm1  denotes the  one norm of a matrix (maximum  column  sum),  normI
36       denotes  the   infinity  norm  of a matrix  (maximum row sum) and normF
37       denotes the  Frobenius  norm  of  a  matrix  (square  root  of  sum  of
38       squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
39

ARGUMENTS

41       NORM      (input) CHARACTER
42                 Specifies  the  value  to  be returned in ZLANHF as described
43                 above.
44
45       TRANSR    (input) CHARACTER
46                 Specifies whether the RFP format of A is normal or conjugate-
47                 transposed format.  = 'N':  RFP format is Normal
48                 = 'C':  RFP format is Conjugate-transposed
49
50       UPLO      (input) CHARACTER
51                 On  entry,  UPLO specifies whether the RFP matrix A came from
52                 an upper or lower triangular matrix as follows: UPLO = 'U' or
53                 'u'  RFP A came from an upper triangular matrix UPLO = 'L' or
54                 'l' RFP A came from a  lower triangular matrix
55
56       N         (input) INTEGER
57                 The order of the matrix A.  N >= 0.  When N =  0,  ZLANHF  is
58                 set to zero.
59
60       A        (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );
61                On entry, the matrix A in RFP Format.  RFP Format is described
62                by TRANSR, UPLO and N as follows:
63                If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
64                K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If TRANSR  =
65                'C'  then  RFP  is the Conjugate-transpose of RFP A as defined
66                when TRANSR = 'N'. The contents of RFP A are defined  by  UPLO
67                as follows: If UPLO = 'U' the RFP A contains the ( N*(N+1)/2 )
68                elements of upper packed A  either  in  normal  or  conjugate-
69                transpose  Format.  If  UPLO  =  'L'  the RFP A contains the (
70                N*(N+1) /2 ) elements of lower packed A either  in  normal  or
71                conjugate-transpose  Format.  The LDA of RFP A is (N+1)/2 when
72                TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is even
73                and  is  N  when  is odd. See the Note below for more details.
74                Unchanged on exit.
75
76       WORK      (workspace) DOUBLE PRECISION array, dimension (LWORK),
77                 where LWORK >= N when NORM = 'I' or '1'  or  'O';  otherwise,
78                 WORK is not referenced.
79

FURTHER DETAILS

81       We first consider Standard Packed Format when N is even.
82       We give an example where N = 6.
83           AP is Upper             AP is Lower
84        00 01 02 03 04 05       00
85           11 12 13 14 15       10 11
86              22 23 24 25       20 21 22
87                 33 34 35       30 31 32 33
88                    44 45       40 41 42 43 44
89                       55       50 51 52 53 54 55
90       Let TRANSR = 'N'. RFP holds AP as follows:
91       For  UPLO  =  'U'  the  upper trapezoid A(0:5,0:2) consists of the last
92       three columns of AP upper. The lower triangle  A(4:6,0:2)  consists  of
93       conjugate-transpose of the first three columns of AP upper.  For UPLO =
94       'L' the lower trapezoid A(1:6,0:2) consists of the first three  columns
95       of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-trans‐
96       pose of the last three columns of AP lower.   To  denote  conjugate  we
97       place  --  above  the element. This covers the case N even and TRANSR =
98       'N'.
99              RFP A                   RFP A
100                                     -- -- --
101             03 04 05                33 43 53
102                                        -- --
103             13 14 15                00 44 54
104                                           --
105             23 24 25                10 11 55
106             33 34 35                20 21 22
107             --
108             00 44 45                30 31 32
109             -- --
110             01 11 55                40 41 42
111             -- -- --
112             02 12 22                50 51 52
113       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
114       transpose of RFP A above. One therefore gets:
115                RFP A                   RFP A
116          -- -- -- --                -- -- -- -- -- --
117          03 13 23 33 00 01 02    33 00 10 20 30 40 50
118          -- -- -- -- --                -- -- -- -- --
119          04 14 24 34 44 11 12    43 44 11 21 31 41 51
120          -- -- -- -- -- --                -- -- -- --
121          05 15 25 35 45 55 22    53 54 55 22 32 42 52
122       We next  consider Standard Packed Format when N is odd.
123       We give an example where N = 5.
124          AP is Upper                 AP is Lower
125        00 01 02 03 04              00
126           11 12 13 14              10 11
127              22 23 24              20 21 22
128                 33 34              30 31 32 33
129                    44              40 41 42 43 44
130       Let TRANSR = 'N'. RFP holds AP as follows:
131       For  UPLO  =  'U'  the  upper trapezoid A(0:4,0:2) consists of the last
132       three columns of AP upper. The lower triangle  A(3:4,0:1)  consists  of
133       conjugate-transpose of the first two   columns of AP upper.  For UPLO =
134       'L' the lower trapezoid A(0:4,0:2) consists of the first three  columns
135       of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-trans‐
136       pose of the last two   columns of AP lower.   To  denote  conjugate  we
137       place  --  above  the element. This covers the case N odd  and TRANSR =
138       'N'.
139              RFP A                   RFP A
140                                        -- --
141             02 03 04                00 33 43
142                                           --
143             12 13 14                10 11 44
144             22 23 24                20 21 22
145             --
146             00 33 34                30 31 32
147             -- --
148             01 11 44                40 41 42
149       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
150       transpose of RFP A above. One therefore gets:
151                RFP A                   RFP A
152          -- -- --                   -- -- -- -- -- --
153          02 12 22 00 01             00 10 20 30 40 50
154          -- -- -- --                   -- -- -- -- --
155          03 13 23 33 11             33 11 21 31 41 51
156          -- -- -- -- --                   -- -- -- --
157          04 14 24 34 44             43 44 22 32 42 52
158
159
160
161 LAPACK routine (version 3.2)    November 2008                       ZLANHF(1)
Impressum