1ZLANHT(1)           LAPACK auxiliary routine (version 3.2)           ZLANHT(1)
2
3
4

NAME

6       ZLANHT  -  returns the value of the one norm, or the Frobenius norm, or
7       the infinity norm, or the element of largest absolute value of  a  com‐
8       plex Hermitian tridiagonal matrix A
9

SYNOPSIS

11       DOUBLE PRECISION FUNCTION ZLANHT( NORM, N, D, E )
12
13           CHARACTER    NORM
14
15           INTEGER      N
16
17           DOUBLE       PRECISION D( * )
18
19           COMPLEX*16   E( * )
20

PURPOSE

22       ZLANHT   returns  the value of the one norm,  or the Frobenius norm, or
23       the  infinity norm,  or the  element of  largest absolute value   of  a
24       complex Hermitian tridiagonal matrix A.
25

DESCRIPTION

27       ZLANHT returns the value
28          ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29                   (
30                   ( norm1(A),         NORM = '1', 'O' or 'o'
31                   (
32                   ( normI(A),         NORM = 'I' or 'i'
33                   (
34                   (  normF(A),          NORM  =  'F',  'f',  'E' or 'e' where
35       norm1  denotes the  one norm of a matrix (maximum  column  sum),  normI
36       denotes  the   infinity  norm  of a matrix  (maximum row sum) and normF
37       denotes the  Frobenius  norm  of  a  matrix  (square  root  of  sum  of
38       squares).   Note  that   max(abs(A(i,j)))   is  not a consistent matrix
39       norm.
40

ARGUMENTS

42       NORM    (input) CHARACTER*1
43               Specifies the value to  be  returned  in  ZLANHT  as  described
44               above.
45
46       N       (input) INTEGER
47               The  order of the matrix A.  N >= 0.  When N = 0, ZLANHT is set
48               to zero.
49
50       D       (input) DOUBLE PRECISION array, dimension (N)
51               The diagonal elements of A.
52
53       E       (input) COMPLEX*16 array, dimension (N-1)
54               The (n-1) sub-diagonal or super-diagonal elements of A.
55
56
57
58 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       ZLANHT(1)
Impressum