1ZLAR2V(1) LAPACK auxiliary routine (version 3.2) ZLAR2V(1)
2
3
4
6 ZLAR2V - applies a vector of complex plane rotations with real cosines
7 from both sides to a sequence of 2-by-2 complex Hermitian matrices,
8
10 SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
11
12 INTEGER INCC, INCX, N
13
14 DOUBLE PRECISION C( * )
15
16 COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
17
19 ZLAR2V applies a vector of complex plane rotations with real cosines
20 from both sides to a sequence of 2-by-2 complex Hermitian matrices,
21 defined by the elements of the vectors x, y and z. For i = 1,2,...,n
22 ( x(i) z(i) ) :=
23 ( conjg(z(i)) y(i) )
24 ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) )
25 ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) )
26
28 N (input) INTEGER
29 The number of plane rotations to be applied.
30
31 X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
32 The vector x; the elements of x are assumed to be real.
33
34 Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
35 The vector y; the elements of y are assumed to be real.
36
37 Z (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
38 The vector z.
39
40 INCX (input) INTEGER
41 The increment between elements of X, Y and Z. INCX > 0.
42
43 C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
44 The cosines of the plane rotations.
45
46 S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
47 The sines of the plane rotations.
48
49 INCC (input) INTEGER
50 The increment between elements of C and S. INCC > 0.
51
52
53
54 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 ZLAR2V(1)