1ZTFTRI(1)LAPACK routine (version 3.2)                                 ZTFTRI(1)
2
3
4

NAME

6       ZTFTRI  -  computes  the inverse of a triangular matrix A stored in RFP
7       format
8

SYNOPSIS

10       SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
11
12           CHARACTER      TRANSR, UPLO, DIAG
13
14           INTEGER        INFO, N
15
16           COMPLEX*16     A( 0: * )
17

PURPOSE

19       ZTFTRI computes the inverse of a triangular matrix A stored in RFP for‐
20       mat.  This is a Level 3 BLAS version of the algorithm.
21

ARGUMENTS

23       TRANSR    (input) CHARACTER
24                 = 'N':  The Normal TRANSR of RFP A is stored;
25                 = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
26
27       UPLO    (input) CHARACTER
28               = 'U':  A is upper triangular;
29               = 'L':  A is lower triangular.
30
31       DIAG    (input) CHARACTER
32               = 'N':  A is non-unit triangular;
33               = 'U':  A is unit triangular.
34
35       N       (input) INTEGER
36               The order of the matrix A.  N >= 0.
37
38       A       (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 );
39               On  entry, the triangular matrix A in RFP format. RFP format is
40               described by TRANSR, UPLO, and N as follows: If TRANSR =
41               'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
42               (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then  RFP  is
43               the  Conjugate-transpose of RFP A as defined when TRANSR = 'N'.
44               The contents of RFP A are defined by UPLO as follows: If UPLO =
45               'U'  the  RFP  A contains the nt elements of upper packed A; If
46               UPLO = 'L' the RFP A contains the nt elements of  lower  packed
47               A.  The  LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When TRANSR
48               is 'N' the LDA is N+1 when N is even and N is odd. See the Note
49               below  for  more details.  On exit, the (triangular) inverse of
50               the original matrix, in the same storage format.
51
52       INFO    (output) INTEGER
53               = 0: successful exit
54               < 0: if INFO = -i, the i-th argument had an illegal value
55               > 0: if INFO = i,  A(i,i)  is  exactly  zero.   The  triangular
56               matrix is singular and its inverse can not be computed.
57

FURTHER DETAILS

59       We first consider Standard Packed Format when N is even.
60       We give an example where N = 6.
61           AP is Upper             AP is Lower
62        00 01 02 03 04 05       00
63           11 12 13 14 15       10 11
64              22 23 24 25       20 21 22
65                 33 34 35       30 31 32 33
66                    44 45       40 41 42 43 44
67                       55       50 51 52 53 54 55
68       Let TRANSR = 'N'. RFP holds AP as follows:
69       For  UPLO  =  'U'  the  upper trapezoid A(0:5,0:2) consists of the last
70       three columns of AP upper. The lower triangle  A(4:6,0:2)  consists  of
71       conjugate-transpose of the first three columns of AP upper.  For UPLO =
72       'L' the lower trapezoid A(1:6,0:2) consists of the first three  columns
73       of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-trans‐
74       pose of the last three columns of AP lower.   To  denote  conjugate  we
75       place  --  above  the element. This covers the case N even and TRANSR =
76       'N'.
77              RFP A                   RFP A
78                                     -- -- --
79             03 04 05                33 43 53
80                                        -- --
81             13 14 15                00 44 54
82                                           --
83             23 24 25                10 11 55
84             33 34 35                20 21 22
85             --
86             00 44 45                30 31 32
87             -- --
88             01 11 55                40 41 42
89             -- -- --
90             02 12 22                50 51 52
91       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
92       transpose of RFP A above. One therefore gets:
93                RFP A                   RFP A
94          -- -- -- --                -- -- -- -- -- --
95          03 13 23 33 00 01 02    33 00 10 20 30 40 50
96          -- -- -- -- --                -- -- -- -- --
97          04 14 24 34 44 11 12    43 44 11 21 31 41 51
98          -- -- -- -- -- --                -- -- -- --
99          05 15 25 35 45 55 22    53 54 55 22 32 42 52
100       We next  consider Standard Packed Format when N is odd.
101       We give an example where N = 5.
102          AP is Upper                 AP is Lower
103        00 01 02 03 04              00
104           11 12 13 14              10 11
105              22 23 24              20 21 22
106                 33 34              30 31 32 33
107                    44              40 41 42 43 44
108       Let TRANSR = 'N'. RFP holds AP as follows:
109       For  UPLO  =  'U'  the  upper trapezoid A(0:4,0:2) consists of the last
110       three columns of AP upper. The lower triangle  A(3:4,0:1)  consists  of
111       conjugate-transpose of the first two   columns of AP upper.  For UPLO =
112       'L' the lower trapezoid A(0:4,0:2) consists of the first three  columns
113       of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-trans‐
114       pose of the last two   columns of AP lower.   To  denote  conjugate  we
115       place  --  above  the element. This covers the case N odd  and TRANSR =
116       'N'.
117              RFP A                   RFP A
118                                        -- --
119             02 03 04                00 33 43
120                                           --
121             12 13 14                10 11 44
122             22 23 24                20 21 22
123             --
124             00 33 34                30 31 32
125             -- --
126             01 11 44                40 41 42
127       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
128       transpose of RFP A above. One therefore gets:
129                RFP A                   RFP A
130          -- -- --                   -- -- -- -- -- --
131          02 12 22 00 01             00 10 20 30 40 50
132          -- -- -- --                   -- -- -- -- --
133          03 13 23 33 11             33 11 21 31 41 51
134          -- -- -- -- --                   -- -- -- --
135          04 14 24 34 44             43 44 22 32 42 52
136
137
138
139 LAPACK routine (version 3.2)    November 2008                       ZTFTRI(1)
Impressum