1ZTGEVC(1)                LAPACK routine (version 3.2)                ZTGEVC(1)
2
3
4

NAME

6       ZTGEVC  - computes some or all of the right and/or left eigenvectors of
7       a pair of complex matrices (S,P), where S and P are upper triangular
8

SYNOPSIS

10       SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP,  VL,  LDVL,
11                          VR, LDVR, MM, M, WORK, RWORK, INFO )
12
13           CHARACTER      HOWMNY, SIDE
14
15           INTEGER        INFO, LDP, LDS, LDVL, LDVR, M, MM, N
16
17           LOGICAL        SELECT( * )
18
19           DOUBLE         PRECISION RWORK( * )
20
21           COMPLEX*16     P( LDP, * ), S( LDS, * ), VL( LDVL, * ), VR( LDVR, *
22                          ), WORK( * )
23

PURPOSE

25       ZTGEVC computes some or all of the right and/or left eigenvectors of  a
26       pair  of  complex  matrices  (S,P), where S and P are upper triangular.
27       Matrix pairs of this type are produced by the generalized Schur factor‐
28       ization of a complex matrix pair (A,B):
29          A = Q*S*Z**H,  B = Q*P*Z**H
30       as computed by ZGGHRD + ZHGEQZ.
31       The right eigenvector x and the left eigenvector y of (S,P) correspond‐
32       ing to an eigenvalue w are defined by:
33          S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
34       where y**H denotes the conjugate tranpose of y.
35       The eigenvalues are  not  input  to  this  routine,  but  are  computed
36       directly from the diagonal elements of S and P.
37       This  routine  returns the matrices X and/or Y of right and left eigen‐
38       vectors of (S,P), or the products Z*X and/or Q*Y,
39       where Z and Q are input matrices.
40       If Q and Z are the unitary factors from the generalized  Schur  factor‐
41       ization of a matrix pair (A,B), then Z*X and Q*Y
42       are the matrices of right and left eigenvectors of (A,B).
43

ARGUMENTS

45       SIDE    (input) CHARACTER*1
46               = 'R': compute right eigenvectors only;
47               = 'L': compute left eigenvectors only;
48               = 'B': compute both right and left eigenvectors.
49
50       HOWMNY  (input) CHARACTER*1
51               = 'A': compute all right and/or left eigenvectors;
52               =  'B':  compute all right and/or left eigenvectors, backtrans‐
53               formed by the matrices in VR and/or VL; = 'S': compute selected
54               right  and/or left eigenvectors, specified by the logical array
55               SELECT.
56
57       SELECT  (input) LOGICAL array, dimension (N)
58               If HOWMNY='S', SELECT specifies the  eigenvectors  to  be  com‐
59               puted.  The eigenvector corresponding to the j-th eigenvalue is
60               computed if SELECT(j) = .TRUE..  Not referenced if HOWMNY = 'A'
61               or 'B'.
62
63       N       (input) INTEGER
64               The order of the matrices S and P.  N >= 0.
65
66       S       (input) COMPLEX*16 array, dimension (LDS,N)
67               The  upper triangular matrix S from a generalized Schur factor‐
68               ization, as computed by ZHGEQZ.
69
70       LDS     (input) INTEGER
71               The leading dimension of array S.  LDS >= max(1,N).
72
73       P       (input) COMPLEX*16 array, dimension (LDP,N)
74               The upper triangular matrix P from a generalized Schur  factor‐
75               ization, as computed by ZHGEQZ.  P must have real diagonal ele‐
76               ments.
77
78       LDP     (input) INTEGER
79               The leading dimension of array P.  LDP >= max(1,N).
80
81       VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
82               On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL  must  con‐
83               tain  an  N-by-N matrix Q (usually the unitary matrix Q of left
84               Schur vectors returned by ZHGEQZ).  On exit, if SIDE =  'L'  or
85               'B',  VL contains: if HOWMNY = 'A', the matrix Y of left eigen‐
86               vectors of (S,P); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY  =
87               'S', the left eigenvectors of (S,P) specified by SELECT, stored
88               consecutively in the columns of VL, in the same order as  their
89               eigenvalues.  Not referenced if SIDE = 'R'.
90
91       LDVL    (input) INTEGER
92               The  leading  dimension  of array VL.  LDVL >= 1, and if SIDE =
93               'L' or 'l' or 'B' or 'b', LDVL >= N.
94
95       VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
96               On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR  must  con‐
97               tain  an N-by-N matrix Q (usually the unitary matrix Z of right
98               Schur vectors returned by ZHGEQZ).  On exit, if SIDE =  'R'  or
99               'B', VR contains: if HOWMNY = 'A', the matrix X of right eigen‐
100               vectors of (S,P); if HOWMNY = 'B', the matrix Z*X; if HOWMNY  =
101               'S',  the  right  eigenvectors  of  (S,P)  specified by SELECT,
102               stored consecutively in the columns of VR, in the same order as
103               their eigenvalues.  Not referenced if SIDE = 'L'.
104
105       LDVR    (input) INTEGER
106               The  leading dimension of the array VR.  LDVR >= 1, and if SIDE
107               = 'R' or 'B', LDVR >= N.
108
109       MM      (input) INTEGER
110               The number of columns in the arrays VL and/or VR. MM >= M.
111
112       M       (output) INTEGER
113               The number of columns in the arrays VL and/or VR actually  used
114               to store the eigenvectors.  If HOWMNY = 'A' or 'B', M is set to
115               N.  Each selected eigenvector occupies one column.
116
117       WORK    (workspace) COMPLEX*16 array, dimension (2*N)
118
119       RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
120
121       INFO    (output) INTEGER
122               = 0:  successful exit.
123               < 0:  if INFO = -i, the i-th argument had an illegal value.
124
125
126
127 LAPACK routine (version 3.2)    November 2008                       ZTGEVC(1)
Impressum