1ZUNMLQ(1)                LAPACK routine (version 3.2)                ZUNMLQ(1)
2
3
4

NAME

6       ZUNMLQ  -  overwrites the general complex M-by-N matrix C with   SIDE =
7       'L' SIDE = 'R' TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE ZUNMLQ( SIDE, TRANS, M, N, K, A, LDA,  TAU,  C,  LDC,  WORK,
11                          LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS
14
15           INTEGER        INFO, K, LDA, LDC, LWORK, M, N
16
17           COMPLEX*16     A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18

PURPOSE

20       ZUNMLQ overwrites the general complex M-by-N matrix C with TRANS = 'C':
21       Q**H * C       C * Q**H
22       where Q is a complex unitary matrix defined as the product of k elemen‐
23       tary reflectors
24             Q = H(k)' . . . H(2)' H(1)'
25       as  returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N if
26       SIDE = 'R'.
27

ARGUMENTS

29       SIDE    (input) CHARACTER*1
30               = 'L': apply Q or Q**H from the Left;
31               = 'R': apply Q or Q**H from the Right.
32
33       TRANS   (input) CHARACTER*1
34               = 'N':  No transpose, apply Q;
35               = 'C':  Conjugate transpose, apply Q**H.
36
37       M       (input) INTEGER
38               The number of rows of the matrix C. M >= 0.
39
40       N       (input) INTEGER
41               The number of columns of the matrix C. N >= 0.
42
43       K       (input) INTEGER
44               The number of elementary reflectors whose product  defines  the
45               matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
46               0.
47
48       A       (input) COMPLEX*16 array, dimension
49               (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row  must
50               contain the vector which defines the elementary reflector H(i),
51               for i = 1,2,...,k, as returned by ZGELQF in the first k rows of
52               its  array  argument  A.   A  is  modified  by  the routine but
53               restored on exit.
54
55       LDA     (input) INTEGER
56               The leading dimension of the array A. LDA >= max(1,K).
57
58       TAU     (input) COMPLEX*16 array, dimension (K)
59               TAU(i) must contain the scalar factor of the elementary reflec‐
60               tor H(i), as returned by ZGELQF.
61
62       C       (input/output) COMPLEX*16 array, dimension (LDC,N)
63               On  entry,  the  M-by-N matrix C.  On exit, C is overwritten by
64               Q*C or Q**H*C or C*Q**H or C*Q.
65
66       LDC     (input) INTEGER
67               The leading dimension of the array C. LDC >= max(1,M).
68
69       WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
70               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
71
72       LWORK   (input) INTEGER
73               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
74               max(1,N);  if  SIDE = 'R', LWORK >= max(1,M).  For optimum per‐
75               formance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE =
76               'R',  where NB is the optimal blocksize.  If LWORK = -1, then a
77               workspace query is assumed; the  routine  only  calculates  the
78               optimal size of the WORK array, returns this value as the first
79               entry of the WORK array, and no error message related to  LWORK
80               is issued by XERBLA.
81
82       INFO    (output) INTEGER
83               = 0:  successful exit
84               < 0:  if INFO = -i, the i-th argument had an illegal value
85
86
87
88 LAPACK routine (version 3.2)    November 2008                       ZUNMLQ(1)
Impressum