1ZUNMQL(1)                LAPACK routine (version 3.2)                ZUNMQL(1)
2
3
4

NAME

6       ZUNMQL  -  overwrites the general complex M-by-N matrix C with   SIDE =
7       'L' SIDE = 'R' TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE ZUNMQL( SIDE, TRANS, M, N, K, A, LDA,  TAU,  C,  LDC,  WORK,
11                          LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS
14
15           INTEGER        INFO, K, LDA, LDC, LWORK, M, N
16
17           COMPLEX*16     A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18

PURPOSE

20       ZUNMQL overwrites the general complex M-by-N matrix C with TRANS = 'C':
21       Q**H * C       C * Q**H
22       where Q is a complex unitary matrix defined as the product of k elemen‐
23       tary reflectors
24             Q = H(k) . . . H(2) H(1)
25       as  returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N if
26       SIDE = 'R'.
27

ARGUMENTS

29       SIDE    (input) CHARACTER*1
30               = 'L': apply Q or Q**H from the Left;
31               = 'R': apply Q or Q**H from the Right.
32
33       TRANS   (input) CHARACTER*1
34               = 'N':  No transpose, apply Q;
35               = 'C':  Transpose, apply Q**H.
36
37       M       (input) INTEGER
38               The number of rows of the matrix C. M >= 0.
39
40       N       (input) INTEGER
41               The number of columns of the matrix C. N >= 0.
42
43       K       (input) INTEGER
44               The number of elementary reflectors whose product  defines  the
45               matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
46               0.
47
48       A       (input) COMPLEX*16 array, dimension (LDA,K)
49               The i-th column must contain the vector which defines the  ele‐
50               mentary  reflector H(i), for i = 1,2,...,k, as returned by ZGE‐
51               QLF in the last k columns of its array argument A.  A is  modi‐
52               fied by the routine but restored on exit.
53
54       LDA     (input) INTEGER
55               The  leading  dimension  of the array A.  If SIDE = 'L', LDA >=
56               max(1,M); if SIDE = 'R', LDA >= max(1,N).
57
58       TAU     (input) COMPLEX*16 array, dimension (K)
59               TAU(i) must contain the scalar factor of the elementary reflec‐
60               tor H(i), as returned by ZGEQLF.
61
62       C       (input/output) COMPLEX*16 array, dimension (LDC,N)
63               On  entry,  the  M-by-N matrix C.  On exit, C is overwritten by
64               Q*C or Q**H*C or C*Q**H or C*Q.
65
66       LDC     (input) INTEGER
67               The leading dimension of the array C. LDC >= max(1,M).
68
69       WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
70               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
71
72       LWORK   (input) INTEGER
73               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
74               max(1,N);  if  SIDE = 'R', LWORK >= max(1,M).  For optimum per‐
75               formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE
76               =  'R', where NB is the optimal blocksize.  If LWORK = -1, then
77               a workspace query is assumed; the routine only  calculates  the
78               optimal size of the WORK array, returns this value as the first
79               entry of the WORK array, and no error message related to  LWORK
80               is issued by XERBLA.
81
82       INFO    (output) INTEGER
83               = 0:  successful exit
84               < 0:  if INFO = -i, the i-th argument had an illegal value
85
86
87
88 LAPACK routine (version 3.2)    November 2008                       ZUNMQL(1)
Impressum