1GMX-HELIX(1)                        GROMACS                       GMX-HELIX(1)
2
3
4

NAME

6       gmx-helix - Calculate basic properties of alpha helices
7

SYNOPSIS

9          gmx helix [-s [<.tpr>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]
10                    [-cz [<.gro/.g96/...>]] [-b <time>] [-e <time>]
11                    [-dt <time>] [-[no]w] [-r0 <int>] [-[no]q] [-[no]F]
12                    [-[no]db] [-[no]ev] [-ahxstart <int>] [-ahxend <int>]
13

DESCRIPTION

15       gmx helix computes all kinds of helix properties. First, the peptide is
16       checked to find the longest helical part,  as  determined  by  hydrogen
17       bonds  and phi/psi angles.  That bit is fitted to an ideal helix around
18       the z-axis and centered around the origin.  Then the following  proper‐
19       ties are computed:
20
21          · Helix  radius  (file radius.xvg). This is merely the RMS deviation
22            in two dimensions for all  Calpha  atoms.   it  is  calculated  as
23            sqrt((sum_i  (x^2(i)+y^2(i)))/N) where N is the number of backbone
24            atoms. For an ideal helix the radius is 0.23 nm.
25
26          · Twist (file twist.xvg). The average helical angle per  residue  is
27            calculated. For an alpha-helix it is 100 degrees, for 3-10 helices
28            it will be smaller, and for 5-helices it will be larger.
29
30          · Rise per residue (file rise.xvg). The helical rise per residue  is
31            plotted  as  the  difference in z-coordinate between Calpha atoms.
32            For an ideal helix, this is 0.15 nm.
33
34          · Total helix length (file len-ahx.xvg). The  total  length  of  the
35            helix in nm. This is simply the average rise (see above) times the
36            number of helical residues (see below).
37
38          · Helix dipole, backbone only (file dip-ahx.xvg).
39
40          · RMS deviation from ideal helix, calculated for  the  Calpha  atoms
41            only (file rms-ahx.xvg).
42
43          · Average Calpha - Calpha dihedral angle (file phi-ahx.xvg).
44
45          · Average phi and psi angles (file phipsi.xvg).
46
47          · Ellipticity at 222 nm according to Hirst and Brooks.
48

OPTIONS

50       Options to specify input files:
51
52       -s [<.tpr>] (topol.tpr)
53              Portable xdr run input file
54
55       -n [<.ndx>] (index.ndx)
56              Index file
57
58       -f [<.xtc/.trr/…>] (traj.xtc)
59              Trajectory: xtc trr cpt gro g96 pdb tng
60
61       Options to specify output files:
62
63       -cz [<.gro/.g96/…>] (zconf.gro)
64              Structure file: gro g96 pdb brk ent esp
65
66       Other options:
67
68       -b <time> (0)
69              Time of first frame to read from trajectory (default unit ps)
70
71       -e <time> (0)
72              Time of last frame to read from trajectory (default unit ps)
73
74       -dt <time> (0)
75              Only use frame when t MOD dt = first time (default unit ps)
76
77       -[no]w (no)
78              View output .xvg, .xpm, .eps and .pdb files
79
80       -r0 <int> (1)
81              The first residue number in the sequence
82
83       -[no]q (no)
84              Check at every step which part of the sequence is helical
85
86       -[no]F (yes)
87              Toggle fit to a perfect helix
88
89       -[no]db (no)
90              Print debug info
91
92       -[no]ev (no)
93              Write a new ‘trajectory’ file for ED
94
95       -ahxstart <int> (0)
96              First residue in helix
97
98       -ahxend <int> (0)
99              Last residue in helix
100

SEE ALSO

102       gmx(1)
103
104       More     information    about    GROMACS    is    available    at    <‐
105       http://www.gromacs.org/>.
106
108       2019, GROMACS development team
109
110
111
112
1132018.7                           May 29, 2019                     GMX-HELIX(1)
Impressum