1GMX-TCAF(1) GROMACS GMX-TCAF(1)
2
3
4
6 gmx-tcaf - Calculate viscosities of liquids
7
9 gmx tcaf [-f [<.trr/.cpt/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
10 [-ot [<.xvg>]] [-oa [<.xvg>]] [-o [<.xvg>]] [-of [<.xvg>]]
11 [-oc [<.xvg>]] [-ov [<.xvg>]] [-b <time>] [-e <time>]
12 [-dt <time>] [-[no]w] [-xvg <enum>] [-[no]mol] [-[no]k34]
13 [-wt <real>] [-acflen <int>] [-[no]normalize] [-P <enum>]
14 [-fitfn <enum>] [-beginfit <real>] [-endfit <real>]
15
17 gmx tcaf computes tranverse current autocorrelations. These are used
18 to estimate the shear viscosity, eta. For details see: Palmer, Phys.
19 Rev. E 49 (1994) pp 359-366.
20
21 Transverse currents are calculated using the k-vectors (1,0,0) and
22 (2,0,0) each also in the y- and z-direction, (1,1,0) and (1,-1,0) each
23 also in the 2 other planes (these vectors are not independent) and
24 (1,1,1) and the 3 other box diagonals (also not independent). For each
25 k-vector the sine and cosine are used, in combination with the velocity
26 in 2 perpendicular directions. This gives a total of 16*2*2=64 trans‐
27 verse currents. One autocorrelation is calculated fitted for each
28 k-vector, which gives 16 TCAFs. Each of these TCAFs is fitted to f(t) =
29 exp(-v)(cosh(Wv) + 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau
30 eta/rho k^2), which gives 16 values of tau and eta. The fit weights
31 decay exponentially with time constant w (given with -wt) as exp(-t/w),
32 and the TCAF and fit are calculated up to time 5*w. The eta values
33 should be fitted to 1 - a eta(k) k^2, from which one can estimate the
34 shear viscosity at k=0.
35
36 When the box is cubic, one can use the option -oc, which averages the
37 TCAFs over all k-vectors with the same length. This results in more
38 accurate TCAFs. Both the cubic TCAFs and fits are written to -oc The
39 cubic eta estimates are also written to -ov.
40
41 With option -mol, the transverse current is determined of molecules
42 instead of atoms. In this case, the index group should consist of mole‐
43 cule numbers instead of atom numbers.
44
45 The k-dependent viscosities in the -ov file should be fitted to eta(k)
46 = eta_0 (1 - a k^2) to obtain the viscosity at infinite wavelength.
47
48 Note: make sure you write coordinates and velocities often enough. The
49 initial, non-exponential, part of the autocorrelation function is very
50 important for obtaining a good fit.
51
53 Options to specify input files:
54
55 -f [<.trr/.cpt/…>] (traj.trr)
56 Full precision trajectory: trr cpt tng
57
58 -s [<.tpr/.gro/…>] (topol.tpr) (Optional)
59 Structure+mass(db): tpr gro g96 pdb brk ent
60
61 -n [<.ndx>] (index.ndx) (Optional)
62 Index file
63
64 Options to specify output files:
65
66 -ot [<.xvg>] (transcur.xvg) (Optional)
67 xvgr/xmgr file
68
69 -oa [<.xvg>] (tcaf_all.xvg)
70 xvgr/xmgr file
71
72 -o [<.xvg>] (tcaf.xvg)
73 xvgr/xmgr file
74
75 -of [<.xvg>] (tcaf_fit.xvg)
76 xvgr/xmgr file
77
78 -oc [<.xvg>] (tcaf_cub.xvg) (Optional)
79 xvgr/xmgr file
80
81 -ov [<.xvg>] (visc_k.xvg)
82 xvgr/xmgr file
83
84 Other options:
85
86 -b <time> (0)
87 Time of first frame to read from trajectory (default unit ps)
88
89 -e <time> (0)
90 Time of last frame to read from trajectory (default unit ps)
91
92 -dt <time> (0)
93 Only use frame when t MOD dt = first time (default unit ps)
94
95 -[no]w (no)
96 View output .xvg, .xpm, .eps and .pdb files
97
98 -xvg <enum> (xmgrace)
99 xvg plot formatting: xmgrace, xmgr, none
100
101 -[no]mol (no)
102 Calculate TCAF of molecules
103
104 -[no]k34 (no)
105 Also use k=(3,0,0) and k=(4,0,0)
106
107 -wt <real> (5)
108 Exponential decay time for the TCAF fit weights
109
110 -acflen <int> (-1)
111 Length of the ACF, default is half the number of frames
112
113 -[no]normalize (yes)
114 Normalize ACF
115
116 -P <enum> (0)
117 Order of Legendre polynomial for ACF (0 indicates none): 0, 1,
118 2, 3
119
120 -fitfn <enum> (none)
121 Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9
122
123 -beginfit <real> (0)
124 Time where to begin the exponential fit of the correlation func‐
125 tion
126
127 -endfit <real> (-1)
128 Time where to end the exponential fit of the correlation func‐
129 tion, -1 is until the end
130
132 gmx(1)
133
134 More information about GROMACS is available at <‐
135 http://www.gromacs.org/>.
136
138 2019, GROMACS development team
139
140
141
142
1432018.7 May 29, 2019 GMX-TCAF(1)