1GMX-DIELECTRIC(1) GROMACS GMX-DIELECTRIC(1)
2
3
4
6 gmx-dielectric - Calculate frequency dependent dielectric constants
7
9 gmx dielectric [-f [<.xvg>]] [-d [<.xvg>]] [-o [<.xvg>]] [-c [<.xvg>]]
10 [-b <time>] [-e <time>] [-dt <time>] [-[no]w]
11 [-xvg <enum>] [-[no]x1] [-eint <real>] [-bfit <real>]
12 [-efit <real>] [-tail <real>] [-A <real>] [-tau1 <real>]
13 [-tau2 <real>] [-eps0 <real>] [-epsRF <real>]
14 [-fix <int>] [-ffn <enum>] [-nsmooth <int>]
15
17 gmx dielectric calculates frequency dependent dielectric constants from
18 the autocorrelation function of the total dipole moment in your simula‐
19 tion. This ACF can be generated by gmx dipoles. The functional forms
20 of the available functions are:
21
22 · One parameter: y = exp(-a_1 x),
23
24 · Two parameters: y = a_2 exp(-a_1 x),
25
26 · Three parameters: y = a_2 exp(-a_1 x) + (1 - a_2) exp(-a_3 x).
27
28 Start values for the fit procedure can be given on the command line.
29 It is also possible to fix parameters at their start value, use -fix
30 with the number of the parameter you want to fix.
31
32 Three output files are generated, the first contains the ACF, an expo‐
33 nential fit to it with 1, 2 or 3 parameters, and the numerical deriva‐
34 tive of the combination data/fit. The second file contains the real
35 and imaginary parts of the frequency-dependent dielectric constant, the
36 last gives a plot known as the Cole-Cole plot, in which the imaginary
37 component is plotted as a function of the real component. For a pure
38 exponential relaxation (Debye relaxation) the latter plot should be one
39 half of a circle.
40
42 Options to specify input files:
43
44 -f [<.xvg>] (dipcorr.xvg)
45 xvgr/xmgr file
46
47 Options to specify output files:
48
49 -d [<.xvg>] (deriv.xvg)
50 xvgr/xmgr file
51
52 -o [<.xvg>] (epsw.xvg)
53 xvgr/xmgr file
54
55 -c [<.xvg>] (cole.xvg)
56 xvgr/xmgr file
57
58 Other options:
59
60 -b <time> (0)
61 Time of first frame to read from trajectory (default unit ps)
62
63 -e <time> (0)
64 Time of last frame to read from trajectory (default unit ps)
65
66 -dt <time> (0)
67 Only use frame when t MOD dt = first time (default unit ps)
68
69 -[no]w (no)
70 View output .xvg, .xpm, .eps and .pdb files
71
72 -xvg <enum> (xmgrace)
73 xvg plot formatting: xmgrace, xmgr, none
74
75 -[no]x1 (yes)
76 use first column as x-axis rather than first data set
77
78 -eint <real> (5)
79 Time to end the integration of the data and start to use the fit
80
81 -bfit <real> (5)
82 Begin time of fit
83
84 -efit <real> (500)
85 End time of fit
86
87 -tail <real> (500)
88 Length of function including data and tail from fit
89
90 -A <real> (0.5)
91 Start value for fit parameter A
92
93 -tau1 <real> (10)
94 Start value for fit parameter tau1
95
96 -tau2 <real> (1)
97 Start value for fit parameter tau2
98
99 -eps0 <real> (80)
100 epsilon0 of your liquid
101
102 -epsRF <real> (78.5)
103 epsilon of the reaction field used in your simulation. A value
104 of 0 means infinity.
105
106 -fix <int> (0)
107 Fix parameters at their start values, A (2), tau1 (1), or tau2
108 (4)
109
110 -ffn <enum> (none)
111 Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9
112
113 -nsmooth <int> (3)
114 Number of points for smoothing
115
117 gmx(1)
118
119 More information about GROMACS is available at <‐
120 http://www.gromacs.org/>.
121
123 2019, GROMACS development team
124
125
126
127
1282019.2 Apr 16, 2019 GMX-DIELECTRIC(1)