1GMX-X2TOP(1) GROMACS GMX-X2TOP(1)
2
3
4
6 gmx-x2top - Generate a primitive topology from coordinates
7
9 gmx x2top [-f [<.gro/.g96/...>]] [-o [<.top>]] [-r [<.rtp>]]
10 [-ff <string>] [-[no]v] [-nexcl <int>] [-[no]H14]
11 [-[no]alldih] [-[no]remdih] [-[no]pairs] [-name <string>]
12 [-[no]pbc] [-[no]pdbq] [-[no]param] [-[no]round]
13 [-kb <real>] [-kt <real>] [-kp <real>]
14
16 gmx x2top generates a primitive topology from a coordinate file. The
17 program assumes all hydrogens are present when defining the hybridiza‐
18 tion from the atom name and the number of bonds. The program can also
19 make an .rtp entry, which you can then add to the .rtp database.
20
21 When -param is set, equilibrium distances and angles and force con‐
22 stants will be printed in the topology for all interactions. The equi‐
23 librium distances and angles are taken from the input coordinates, the
24 force constant are set with command line options. The force fields
25 somewhat supported currently are:
26
27 G53a5 GROMOS96 53a5 Forcefield (official distribution)
28
29 oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)
30
31 The corresponding data files can be found in the library directory with
32 name atomname2type.n2t. Check Chapter 5 of the manual for more informa‐
33 tion about file formats. By default, the force field selection is
34 interactive, but you can use the -ff option to specify one of the short
35 names above on the command line instead. In that case gmx x2top just
36 looks for the corresponding file.
37
39 Options to specify input files:
40
41 -f [<.gro/.g96/…>] (conf.gro)
42 Structure file: gro g96 pdb brk ent esp tpr
43
44 Options to specify output files:
45
46 -o [<.top>] (out.top) (Optional)
47 Topology file
48
49 -r [<.rtp>] (out.rtp) (Optional)
50 Residue Type file used by pdb2gmx
51
52 Other options:
53
54 -ff <string> (oplsaa)
55 Force field for your simulation. Type “select” for interactive
56 selection.
57
58 -[no]v (no)
59 Generate verbose output in the top file.
60
61 -nexcl <int> (3)
62 Number of exclusions
63
64 -[no]H14 (yes)
65 Use 3rd neighbour interactions for hydrogen atoms
66
67 -[no]alldih (no)
68 Generate all proper dihedrals
69
70 -[no]remdih (no)
71 Remove dihedrals on the same bond as an improper
72
73 -[no]pairs (yes)
74 Output 1-4 interactions (pairs) in topology file
75
76 -name <string> (ICE)
77 Name of your molecule
78
79 -[no]pbc (yes)
80 Use periodic boundary conditions.
81
82 -[no]pdbq (no)
83 Use the B-factor supplied in a .pdb file for the atomic charges
84
85 -[no]param (yes)
86 Print parameters in the output
87
88 -[no]round (yes)
89 Round off measured values
90
91 -kb <real> (400000)
92 Bonded force constant (kJ/mol/nm^2)
93
94 -kt <real> (400)
95 Angle force constant (kJ/mol/rad^2)
96
97 -kp <real> (5)
98 Dihedral angle force constant (kJ/mol/rad^2)
99
101 · The atom type selection is primitive. Virtually no chemical knowledge
102 is used
103
104 · Periodic boundary conditions screw up the bonding
105
106 · No improper dihedrals are generated
107
108 · The atoms to atomtype translation table is incomplete (atom‐
109 name2type.n2t file in the data directory). Please extend it and send
110 the results back to the GROMACS crew.
111
113 gmx(1)
114
115 More information about GROMACS is available at <‐
116 http://www.gromacs.org/>.
117
119 2019, GROMACS development team
120
121
122
123
1242019.2 Apr 16, 2019 GMX-X2TOP(1)