1HOTSPOTTER(1)                         GMT                        HOTSPOTTER(1)
2
3
4

NAME

6       hotspotter - Create CVA image from seamount locations
7

SYNOPSIS

9       hotspotter [tables]  -Erotfile  -GCVAgrid
10        -Iincrement
11        -Rregion [  -Nupper_age ] [  -S ] [  -T ] [  -V[level] ] [ -bibinary ]
12       [ -dinodata ] [ -eregexp ] [ -hheaders ] [ -iflags  ]  [  -oflags  ]  [
13       -:[i|o] ]
14
15       Note:  No  space  is allowed between the option flag and the associated
16       arguments.
17

DESCRIPTION

19       hotspotter reads (longitude, latitude, amplitude, radius, age)  records
20       from  tables  [or  standard  input]  and calculates flowlines using the
21       specified stage or total reconstruction rotations. These flowlines  are
22       convolved  with the shape of the seamount (using a Gaussian shape given
23       amplitude and radius = 6 sigma) and added up to give a Cumulative  Vol‐
24       cano  Amplitude grid (CVA). See option -: on how to read (latitude,lon‐
25       gitude,...) files.
26

REQUIRED ARGUMENTS

28       table  One or more ASCII (or binary, see -bi[ncols][type])  data  table
29              file(s) holding a number of data columns. If no tables are given
30              then we read from standard input.
31
32       -Erotfile
33              Give file with rotation parameters. This file must  contain  one
34              record  for  each rotation; each record must be of the following
35              format:
36
37              lon lat tstart [tstop] angle [ khat a b c d e f g df ]
38
39              where tstart and tstop are in Myr  and  lon  lat  angle  are  in
40              degrees. tstart and tstop are the ages of the old and young ends
41              of a stage. If tstop is not present in the record then  a  total
42              reconstruction  rotation is expected and tstop is implicitly set
43              to 0 and should not be specified for any of the records  in  the
44              file.  If a covariance matrix C for the rotation is available it
45              must be specified in a format  using  the  nine  optional  terms
46              listed  in  brackets. Here, C = (g/khat)*[ a b d; b c e; d e f ]
47              which shows C made up of three row vectors. If  the  degrees  of
48              freedom (df) in fitting the rotation is 0 or not given it is set
49              to 10000. Blank lines and records whose first column contains  #
50              will  be ignored. You may prepend a leading + to the filename to
51              indicate you wish to invert the rotations.  Alternatively,  give
52              the  filename  composed  of  two plate IDs separated by a hyphen
53              (e.g., PAC-MBL) and we will instead extract that  rotation  from
54              the  GPlates  rotation database. We return an error if the rota‐
55              tion cannot be found.
56
57       -GCVAgrid
58              Specify name for output grid file.
59
60       -Ixinc[unit][+e|n][/yinc[unit][+e|n]]
61              x_inc [and optionally y_inc] is the  grid  spacing.  Optionally,
62              append  a  suffix  modifier. Geographical (degrees) coordinates:
63              Append m to indicate arc minutes or s to indicate  arc  seconds.
64              If  one of the units e, f, k, M, n or u is appended instead, the
65              increment is assumed to be given in meter, foot, km, Mile,  nau‐
66              tical  mile  or  US  survey foot, respectively, and will be con‐
67              verted to the equivalent degrees longitude at the  middle  lati‐
68              tude  of  the region (the conversion depends on PROJ_ELLIPSOID).
69              If y_inc is given but set to 0 it will be reset equal to  x_inc;
70              otherwise  it will be converted to degrees latitude. All coordi‐
71              nates: If +e is appended then the corresponding max x (east)  or
72              y  (north)  may  be  slightly  adjusted to fit exactly the given
73              increment [by default the increment may be adjusted slightly  to
74              fit  the  given domain]. Finally, instead of giving an increment
75              you may specify the number of nodes desired by appending  +n  to
76              the  supplied  integer  argument; the increment is then recalcu‐
77              lated from the number of nodes and  the  domain.  The  resulting
78              increment  value  depends  on  whether you have selected a grid‐
79              line-registered or pixel-registered grid;  see  App-file-formats
80              for  details.  Note:  if -Rgrdfile is used then the grid spacing
81              has already been initialized; use -I to override the values.
82
83       -Rwest/east/south/north[/zmin/zmax][+r][+uunit]
84              west, east, south, and north specify the region of interest, and
85              you    may    specify    them   in   decimal   degrees   or   in
86              [±]dd:mm[:ss.xxx][W|E|S|N] format Append +r if  lower  left  and
87              upper  right  map  coordinates are given instead of w/e/s/n. The
88              two shorthands -Rg and -Rd stand for global  domain  (0/360  and
89              -180/+180  in longitude respectively, with -90/+90 in latitude).
90              Alternatively for grid creation, give Rcodelon/lat/nx/ny,  where
91              code  is a 2-character combination of L, C, R (for left, center,
92              or right) and T, M, B for top, middle, or bottom. e.g.,  BL  for
93              lower  left.  This indicates which point on a rectangular region
94              the lon/lat coordinate refers to, and the grid dimensions nx and
95              ny with grid spacings via -I is used to create the corresponding
96              region.  Alternatively, specify the name  of  an  existing  grid
97              file  and  the -R settings (and grid spacing, if applicable) are
98              copied from the grid. Appending +uunit expects projected (Carte‐
99              sian)  coordinates  compatible  with  chosen -J and we inversely
100              project to determine actual rectangular geographic region.   For
101              perspective view (-p), optionally append /zmin/zmax.  In case of
102              perspective view (-p), a z-range (zmin, zmax) can be appended to
103              indicate  the  third  dimension. This needs to be done only when
104              using the -Jz option, not when using only the -p option. In  the
105              latter  case a perspective view of the plane is plotted, with no
106              third dimension.
107

OPTIONAL ARGUMENTS

109       -Dfactor
110              Modify the sampling  interval  along  flowlines.  Default  [0.5]
111              gives  approximately 2 points within each grid box. Smaller fac‐
112              tors gives higher resolutions at the expense of longer  process‐
113              ing time.
114
115       -Nupper_age
116              Set  the  upper  age  to  assign  seamounts whose crustal age is
117              unknown (i.e., NaN) [no upper age].
118
119       -S     Normalize the resulting CVA grid to percentages of the CVA maxi‐
120              mum.
121
122       -T     Truncate  seamount  ages exceeding the upper age set with -N [no
123              truncation].
124
125       -V[level] (more ...)
126              Select verbosity level [c].
127
128       -bi[ncols][t] (more ...)
129              Select native binary input. [Default is 5 input columns].
130
131       -dinodata (more ...)
132              Replace input columns that equal nodata with NaN.
133
134       -e[~]"pattern" | -e[~]/regexp/[i] (more ...)
135              Only accept data records that match the given pattern.
136
137       -V[level] (more ...)
138              Select verbosity level [c].
139
140       -icols[+l][+sscale][+ooffset][,...] (more ...)
141              Select input columns and transformations (0 is first column).
142
143       -ocols[,...] (more ...)
144              Select output columns (0 is first column).
145
146       -r (more ...)
147              Set pixel node registration [gridline].
148
149       -:[i|o] (more ...)
150              Swap 1st and 2nd column on input and/or output.
151
152       -^ or just -
153              Print a short message about the  syntax  of  the  command,  then
154              exits (NOTE: on Windows just use -).
155
156       -+ or just +
157              Print  an extensive usage (help) message, including the explana‐
158              tion of any module-specific  option  (but  not  the  GMT  common
159              options), then exits.
160
161       -? or no arguments
162              Print a complete usage (help) message, including the explanation
163              of all options, then exits.
164

GEODETIC VERSUS GEOCENTRIC COORDIINATES

166       All spherical rotations are applied to  geocentric  coordinates.   This
167       means  that  incoming data points and grids are considered to represent
168       geodetic coordinates and must first be converted to geocentric  coordi‐
169       nates.  Rotations  are then applied, and the final reconstructed points
170       are converted back to geodetic coordinates.  This default behavior  can
171       be  bypassed  if  the  ellipsoid  setting  PROJ_ELLIPSOID is changed to
172       Sphere.
173

EXAMPLES

175       To create a CVA image from the Pacific (x,y,z,r,t)  data  in  the  file
176       seamounts.d, using the DC85.d Euler poles, run
177
178              gmt hotspotter seamounts.d -EDC85.d -GCVA.nc -R130/260/-66/60 -I10m -N145 -T -V
179
180       This file can then be plotted with grdimage.
181

NOTES

183       GMT    distributes   the   EarthByte   rotation   model   Global_Earth‐
184       Byte_230-0Ma_GK07_AREPS.rot.  To use an alternate rotation file, create
185       an  environmental  parameters named GPLATES_ROTATIONS that points to an
186       alternate rotation file.
187

SEE ALSO

189       gmt,  grdimage,  grdrotater,  grdspotter,  project,  mapproject,  back‐
190       tracker, gmtpmodeler, grdpmodeler, grdrotater, originator
191

REFERENCES

193       Wessel,  P.,  1999,  "Hotspotting"  tools  released, EOS Trans. AGU, 80
194       (29), p. 319.
195
196       Wessel, P., 2008, Hotspotting: Principles and  properties  of  a  plate
197       tectonic   Hough   transform,  Geochem.  Geophys.  Geosyst.  9(Q08004):
198       doi:10.1029/2008GC002058.
199
201       2019, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe
202
203
204
205
2065.4.5                            Feb 24, 2019                    HOTSPOTTER(1)
Impressum