1mlpack_softmax_regression(1)General Commands Manualmlpack_softmax_regression(1)
2
3
4

NAME

6       mlpack_softmax_regression - softmax regression
7

SYNOPSIS

9        mlpack_softmax_regression [-h] [-v]
10

DESCRIPTION

12       This  program performs softmax regression, a generalization of logistic
13       regression to the multiclass case, and has support for  L2  regulariza‐
14       tion. The program is able to train a model, load an existing model, and
15       give predictions (and optionally their accuracy) for test data.
16
17       Training a softmax regression model is done by giving a file of  train‐
18       ing  points  with  --training_file  (-t) and their corresponding labels
19       with --labels_file (-l). The number of classes can be  manually  speci‐
20       fied  with  the --number_of_classes (-n) option, and the maximum number
21       of iterations of  the  L-BFGS  optimizer  can  be  specified  with  the
22       --max_iterations  (-M)  option.  The  L2 regularization constant can be
23       specified with --lambda (-r), and if an intercept term is  not  desired
24       in the model, the --no_intercept (-N) can be specified.
25
26       The  trained  model can be saved to a file with the --output_model_file
27       (-m) option. If training is not desired, but only testing is,  a  model
28       can  be  loaded with the --input_model_file (-i) option. At the current
29       time, a loaded model cannot be trained further, so specifying  both  -i
30       and -t is not allowed.
31
32       The  program  is  also  able  to  evaluate a model on test data. A test
33       dataset can be specified with the --test_data (-T) option.  Class  pre‐
34       dictions  will  be  saved  in  the  file  specified  with the --predic‐
35       tions_file (-p) option. If labels are specified for the test data, with
36       the --test_labels (-L) option, then the program will print the accuracy
37       of the predictions on the given test set and its corresponding labels.
38

OPTIONAL INPUT OPTIONS

40       --help (-h)
41              Default help info.
42
43       --info [string]
44              Get help on a specific module  or  option.   Default  value  ''.
45              --input_model_file  (-m) [string] File containing existing model
46              (parameters).  Default value ''.
47
48       --labels_file (-l) [string]
49              A file containing labels (0 or 1) for the points in the training
50              set (y). The labels must order as a row. Default value ''.
51
52       --lambda (-r) [double]
53              L2-regularization constant Default value 0.0001.
54
55       --max_iterations (-n) [int]
56              Maximum  number of iterations before termination.  Default value
57              400.
58
59       --no_intercept (-N)
60              Do not add the intercept term to the model.  --number_of_classes
61              (-c)  [int] Number of classes for classification; if unspecified
62              (or 0), the number of classes found in the labels will be  used.
63              Default value 0.
64
65       --test_data (-T) [string]
66              File containing test dataset. Default value ’'.
67
68       --test_labels (-L) [string]
69              File  containing test labels. Default value ''.  --training_file
70              (-t) [string] A file containing the training set (the matrix  of
71              predictors, X). Default value ''.
72
73       --verbose (-v)
74              Display  informational  messages and the full list of parameters
75              and timers at the end of execution.
76
77       --version (-V)
78              Display the version of mlpack.
79

OPTIONAL OUTPUT OPTIONS

81       --output_model_file (-M) [string] File to save trained softmax  regres‐
82       sion model to. Default value ''.  --predictions_file (-p) [string] File
83       to save predictions for test dataset into.  Default value ''.
84

ADDITIONAL INFORMATION

ADDITIONAL INFORMATION

87       For further information, including relevant papers, citations, and the‐
88       ory, For further information, including relevant papers, citations, and
89       theory, consult the documentation  found  at  http://www.mlpack.org  or
90       included    with    your    consult    the   documentation   found   at
91       http://www.mlpack.org or included with  your  DISTRIBUTION  OF  MLPACK.
92       DISTRIBUTION OF MLPACK.
93
94
95
96                                                  mlpack_softmax_regression(1)
Impressum