1i.vi(1)                       Grass User's Manual                      i.vi(1)
2
3
4

NAME

6       i.vi  - Calculates different types of vegetation indices.
7       Uses  red  and  nir  bands  mostly, and some indices require additional
8       bands.
9

KEYWORDS

11       imagery, vegetation index, biophysical parameters, NDVI
12

SYNOPSIS

14       i.vi
15       i.vi --help
16       i.vi  red=name  output=name  viname=type    [nir=name]     [green=name]
17       [blue=name]     [band5=name]    [band7=name]    [soil_line_slope=float]
18       [soil_line_intercept=float]     [soil_noise_reduction=float]     [stor‐
19       age_bit=integer]     [--overwrite]   [--help]   [--verbose]   [--quiet]
20       [--ui]
21
22   Flags:
23       --overwrite
24           Allow output files to overwrite existing files
25
26       --help
27           Print usage summary
28
29       --verbose
30           Verbose module output
31
32       --quiet
33           Quiet module output
34
35       --ui
36           Force launching GUI dialog
37
38   Parameters:
39       red=name [required]
40           Name of input red channel surface reflectance map
41           Range: [0.0;1.0]
42
43       output=name [required]
44           Name for output raster map
45
46       viname=type [required]
47           Type of vegetation index
48           Options: arvi, dvi,  evi,  evi2,  gvi,  gari,  gemi,  ipvi,  msavi,
49           msavi2, ndvi, pvi, savi, sr, vari, wdvi
50           Default: ndvi
51           arvi: Atmospherically Resistant Vegetation Index
52           dvi: Difference Vegetation Index
53           evi: Enhanced Vegetation Index
54           evi2: Enhanced Vegetation Index 2
55           gvi: Green Vegetation Index
56           gari: Green Atmospherically Resistant Vegetation Index
57           gemi: Global Environmental Monitoring Index
58           ipvi: Infrared Percentage Vegetation Index
59           msavi: Modified Soil Adjusted Vegetation Index
60           msavi2: second Modified Soil Adjusted Vegetation Index
61           ndvi: Normalized Difference Vegetation Index
62           pvi: Perpendicular Vegetation Index
63           savi: Soil Adjusted Vegetation Index
64           sr: Simple Ratio
65           vari: Visible Atmospherically Resistant Index
66           wdvi: Weighted Difference Vegetation Index
67
68       nir=name
69           Name of input nir channel surface reflectance map
70           Range: [0.0;1.0]
71
72       green=name
73           Name of input green channel surface reflectance map
74           Range: [0.0;1.0]
75
76       blue=name
77           Name of input blue channel surface reflectance map
78           Range: [0.0;1.0]
79
80       band5=name
81           Name of input 5th channel surface reflectance map
82           Range: [0.0;1.0]
83
84       band7=name
85           Name of input 7th channel surface reflectance map
86           Range: [0.0;1.0]
87
88       soil_line_slope=float
89           Value of the slope of the soil line (MSAVI only)
90
91       soil_line_intercept=float
92           Value of the intercept of the soil line (MSAVI only)
93
94       soil_noise_reduction=float
95           Value of the factor of reduction of soil noise (MSAVI only)
96
97       storage_bit=integer
98           Maximum bits for digital numbers
99           If  data  is  in  Digital Numbers (i.e. integer type), give the max
100           bits (i.e. 8 for Landsat -> [0-255])
101           Options: 7, 8, 10, 16
102           Default: 8
103

DESCRIPTION

105       i.vi calculates vegetation indices based on biophysical parameters.
106
107           ·   ARVI: atmospherically resistant vegetation indices
108
109           ·   DVI: Difference Vegetation Index
110
111           ·   EVI: Enhanced Vegetation Index
112
113           ·   EVI2: Enhanced Vegetation Index 2
114
115           ·   GARI: Green atmospherically resistant vegetation index
116
117           ·   GEMI: Global Environmental Monitoring Index
118
119           ·   GVI: Green Vegetation Index
120
121           ·   IPVI: Infrared Percentage Vegetation Index
122
123           ·   MSAVI2: second Modified Soil Adjusted Vegetation Index
124
125           ·   MSAVI: Modified Soil Adjusted Vegetation Index
126
127           ·   NDVI: Normalized Difference Vegetation Index
128
129           ·   PVI: Perpendicular Vegetation Index
130
131           ·   RVI: ratio vegetation index
132
133           ·   SAVI: Soil Adjusted Vegetation Index
134
135           ·   SR: Simple Vegetation ratio
136
137           ·   WDVI: Weighted Difference Vegetation Index
138
139   Background for users new to remote sensing
140       Vegetation Indices are often considered the entry point of remote sens‐
141       ing  for  Earth land monitoring. They are suffering from their success,
142       in terms that often people tend to harvest satellite images from online
143       sources and use them directly in this module.
144
145       From Digital number to Radiance:
146       Satellite imagery is commonly stored in Digital Number (DN) for storage
147       purposes; e.g., Landsat5 data is stored in 8bit values (ranging from  0
148       to 255), other satellites maybe stored in 10 or 16 bits. If the data is
149       provided in DN, this implies that this imagery is  "uncorrected".  What
150       this means is that the image is what the satellite sees at its position
151       and altitude in space (stored in DN).  This is not the signal at ground
152       yet.  We call this data at-satellite or at-sensor. Encoded in the 8bits
153       (or more) is the amount of energy  sensed  by  the  sensor  inside  the
154       satellite  platform.  This  energy is called radiance-at-sensor. Gener‐
155       ally, satellites image providers  encode  the  radiance-at-sensor  into
156       8bit  (or  more) through an affine transform equation (y=ax+b). In case
157       of using Landsat imagery, look at the i.landsat.toar for an easy way to
158       transform  DN  to  radiance-at-sensor.  If  using  Aster  data, try the
159       i.aster.toar module.
160
161       From Radiance to Reflectance:
162       Finally, once having obtained the radiance at sensor values, still  the
163       atmosphere is between sensor and Earth’s surface. This fact needs to be
164       corrected to account for  the  atmospheric  interaction  with  the  sun
165       energy  that the vegetation reflects back into space.  This can be done
166       in two ways for Landsat. The simple way is through i.landsat.toar,  use
167       e.g.  the  DOS  correction.  The more accurate way is by using i.atcorr
168       (which works for many satellite sensors). Once the atmospheric  correc‐
169       tion has been applied to the satellite data, data vales are called sur‐
170       face reflectance.  Surface reflectance is ranging from 0.0 to 1.0 theo‐
171       retically (and absolutely). This level of data correction is the proper
172       level of correction to use with i.vi.
173
174   Vegetation Indices
175       ARVI: Atmospheric Resistant Vegetation Index
176
177       ARVI is resistant to atmospheric effects (in comparison  to  the  NDVI)
178       and  is  accomplished  by a self correcting process for the atmospheric
179       effect in the red channel, using the difference in the radiance between
180       the blue and the red channels (Kaufman and Tanre 1996).
181       arvi( redchan, nirchan, bluechan )
182       ARVI = (nirchan - (2.0*redchan - bluechan)) /
183              ( nirchan + (2.0*redchan - bluechan))
184
185       DVI: Difference Vegetation Index
186       dvi( redchan, nirchan )
187       DVI = ( nirchan - redchan )
188
189       EVI: Enhanced Vegetation Index
190
191       The  enhanced  vegetation index (EVI) is an optimized index designed to
192       enhance the vegetation signal with improved sensitivity in high biomass
193       regions and improved vegetation monitoring through a de-coupling of the
194       canopy background signal  and  a  reduction  in  atmosphere  influences
195       (Huete A.R., Liu H.Q., Batchily K., van Leeuwen W. (1997). A comparison
196       of vegetation indices global set of TM  images  for  EOS-MODIS.  Remote
197       Sensing of Environment, 59:440-451).
198       evi( bluechan, redchan, nirchan )
199       EVI = 2.5 * ( nirchan - redchan ) /
200             ( nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0 )
201
202       EVI2: Enhanced Vegetation Index 2
203
204       A 2-band EVI (EVI2), without a blue band, which has the best similarity
205       with  the  3-band  EVI,  particularly  when  atmospheric  effects   are
206       insignificant  and  data  quality  is good (Zhangyan Jiang ; Alfredo R.
207       Huete ; Youngwook Kim and Kamel Didan 2-band enhanced vegetation  index
208       without a blue band and its application to AVHRR data. Proc. SPIE 6679,
209       Remote Sensing and Modeling of Ecosystems for Sustainability IV, 667905
210       (october 09, 2007) doi:10.1117/12.734933).
211       evi2( redchan, nirchan )
212       EVI2 = 2.5 * ( nirchan - redchan ) /
213              ( nirchan + 2.4 * redchan + 1.0 )
214
215       GARI: green atmospherically resistant vegetation index
216
217       The  formula was actually defined: Gitelson, Anatoly A.; Kaufman, Yoram
218       J.; Merzlyak, Mark N. (1996) Use of a green channel in  remote  sensing
219       of  global vegetation from EOS- MODIS, Remote Sensing of Environment 58
220       (3), 289-298.  doi:10.1016/s0034-4257(96)00072-7
221       gari( redchan, nirchan, bluechan, greenchan )
222       GARI = ( nirchan - (greenchan - (bluechan - redchan))) /
223              ( nirchan + (greenchan - (bluechan - redchan)))
224
225       GEMI: Global Environmental Monitoring Index
226       gemi( redchan, nirchan )
227       GEMI = (( (2*((nirchan * nirchan)-(redchan * redchan)) +
228              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5)) *
229              (1 - 0.25 * (2*((nirchan * nirchan)-(redchan * redchan)) +
230              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5))) -
231              ( (redchan - 0.125) / (1 - redchan))
232
233       GVI: Green Vegetation Index
234       gvi( bluechan, greenchan, redchan, nirchan, chan5chan, chan7chan)
235       GVI = ( -0.2848 * bluechan - 0.2435 * greenchan -
236             0.5436 * redchan + 0.7243 * nirchan + 0.0840 * chan5chan-
237             0.1800 * chan7chan)
238
239       IPVI: Infrared Percentage Vegetation Index
240       ipvi( redchan, nirchan )
241       IPVI = nirchan/(nirchan+redchan)
242
243       MSAVI2: second Modified Soil Adjusted Vegetation Index
244       msavi2( redchan, nirchan )
245       MSAVI2 = (1/2)*(2*NIR+1-sqrt((2*NIR+1)^2-8*(NIR-red)))
246
247       MSAVI: Modified Soil Adjusted Vegetation Index
248       msavi( redchan, nirchan )
249       MSAVI = s(NIR-s*red-a) / (a*NIR+red-a*s+X*(1+s*s))
250       where a is the soil line intercept, s is the soil  line  slope,  and  X
251         is  an adjustment factor which is set to minimize soil noise (0.08 in
252       original papers).
253
254       NDVI: Normalized Difference Vegetation Index
255       ndvi( redchan, nirchan )
256       Satellite specific band numbers ([NIR, Red]):
257         MSS Bands        = [ 7,  5]
258         TM1-5,7 Bands    = [ 4,  3]
259         TM8 Bands        = [ 5,  4]
260         Sentinel-2 Bands = [ 8,  4]
261         AVHRR Bands      = [ 2,  1]
262         SPOT XS Bands    = [ 3,  2]
263         AVIRIS Bands     = [51, 29]
264       NDVI = (NIR - Red) / (NIR + Red)
265
266       PVI: Perpendicular Vegetation Index
267       pvi( redchan, nirchan )
268       PVI = sin(a)NIR-cos(a)red
269       for a isovegetation lines (lines of equal vegetation) would all be par‐
270       allel to the soil line therefore a=1.
271
272       SAVI: Soil Adjusted Vegetation Index
273       savi( redchan, nirchan )
274       SAVI = ((1.0+0.5)*(nirchan - redchan)) / (nirchan + redchan +0.5)
275
276       SR: Simple Vegetation ratio
277       sr( redchan, nirchan )
278       SR = (nirchan/redchan)
279
280       VARI:  Visible  Atmospherically  Resistant  Index  VARI was designed to
281       introduce an atmospheric self-correction (Gitelson A.A., Kaufman  Y.J.,
282       Stark  R., Rundquist D., 2002. Novel algorithms for estimation of vege‐
283       tation fraction Remote Sensing of Environment (80), pp76-87.)
284       vari = ( bluechan, greenchan, redchan )
285       VARI = (green - red ) / (green + red - blue)
286
287       WDVI: Weighted Difference Vegetation Index
288       wdvi( redchan, nirchan, soil_line_weight )
289       WDVI = nirchan - a * redchan
290       if(soil_weight_line == None):
291          a = 1.0   #slope of soil line
292

EXAMPLES

294   Calculation of DVI
295       The calculation of DVI from the reflectance values is done as follows:
296       g.region raster=band.1 -p
297       i.vi blue=band.1 red=band.3 nir=band.4 viname=dvi output=dvi
298       r.univar -e dvi
299
300   Calculation of EVI
301       The calculation of EVI from the reflectance values is done as follows:
302       g.region raster=band.1 -p
303       i.vi blue=band.1 red=band.3 nir=band.4 viname=evi output=evi
304       r.univar -e evi
305
306   Calculation of EVI2
307       The calculation of EVI2 from the reflectance values is done as follows:
308       g.region raster=band.3 -p
309       i.vi red=band.3 nir=band.4 viname=evi2 output=evi2
310       r.univar -e evi2
311
312   Calculation of GARI
313       The calculation of GARI from the reflectance values is done as follows:
314       g.region raster=band.1 -p
315       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 viname=gari output=gari
316       r.univar -e gari
317
318   Calculation of GEMI
319       The calculation of GEMI from the reflectance values is done as follows:
320       g.region raster=band.3 -p
321       i.vi red=band.3 nir=band.4 viname=gemi output=gemi
322       r.univar -e gemi
323
324   Calculation of GVI
325       The calculation of GVI from the reflectance values is done as follows:
326       g.region raster=band.3 -p
327       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 band5=band.5 band7=band.7 viname=gvi output=gvi
328       r.univar -e gvi
329
330   Calculation of IPVI
331       The calculation of IPVI from the reflectance values is done as follows:
332       g.region raster=band.3 -p
333       i.vi red=band.3 nir=band.4 viname=ipvi output=ipvi
334       r.univar -e ipvi
335
336   Calculation of MSAVI
337       The calculation of MSAVI from the reflectance values is  done  as  fol‐
338       lows:
339       g.region raster=band.3 -p
340       i.vi red=band.3 nir=band.4 viname=msavi output=msavi
341       r.univar -e msavi
342
343   Calculation of NDVI
344       The calculation of NDVI from the reflectance values is done as follows:
345       g.region raster=band.3 -p
346       i.vi red=band.3 nir=band.4 viname=ndvi output=ndvi
347       r.univar -e ndvi
348
349   Calculation of PVI
350       The calculation of PVI from the reflectance values is done as follows:
351       g.region raster=band.3 -p
352       i.vi red=band.3 nir=band.4 viname=pvi output=pvi
353       r.univar -e pvi
354
355   Calculation of SAVI
356       The calculation of SAVI from the reflectance values is done as follows:
357       g.region raster=band.3 -p
358       i.vi red=band.3 nir=band.4 viname=savi output=savi
359       r.univar -e savi
360
361   Calculation of SR
362       The calculation of SR from the reflectance values is done as follows:
363       g.region raster=band.3 -p
364       i.vi red=band.3 nir=band.4 viname=sr output=sr
365       r.univar -e sr
366
367   Calculation of VARI
368       The calculation of VARI from the reflectance values is done as follows:
369       g.region raster=band.3 -p
370       i.vi blue=band.2 green=band.3 red=band.4 viname=vari output=vari
371       r.univar -e vari
372
373   Landsat TM7 example
374       The following examples are based on a LANDSAT TM7 scene included in the
375       North Carolina sample dataset.
376
377   Preparation: DN to reflectance
378       As a first step, the original DN (digital number) pixel values must  be
379       converted to reflectance using i.landsat.toar. To do so, we make a copy
380       (or rename the channels) to match i.landsat.toar’s input scheme:
381
382       g.copy raster=lsat7_2002_10,lsat7_2002.1
383       g.copy raster=lsat7_2002_20,lsat7_2002.2
384       g.copy raster=lsat7_2002_30,lsat7_2002.3
385       g.copy raster=lsat7_2002_40,lsat7_2002.4
386       g.copy raster=lsat7_2002_50,lsat7_2002.5
387       g.copy raster=lsat7_2002_61,lsat7_2002.61
388       g.copy raster=lsat7_2002_62,lsat7_2002.62
389       g.copy raster=lsat7_2002_70,lsat7_2002.7
390       g.copy raster=lsat7_2002_80,lsat7_2002.8
391
392       Calculation of reflectance values from DN using DOS1 (metadata obtained
393       from p016r035_7x20020524.met.gz):
394
395       i.landsat.toar input=lsat7_2002. output=lsat7_2002_toar. sensor=tm7 \
396         method=dos1 date=2002-05-24 sun_elevation=64.7730999 \
397         product_date=2004-02-12 gain=HHHLHLHHL
398       The   resulting   Landsat   channels  are  names  lsat7_2002_toar.1  ..
399       lsat7_2002_toar.8.
400
401   Calculation of NDVI
402       The calculation of NDVI from the reflectance values is done as follows:
403       g.region raster=lsat7_2002_toar.3 -p
404       i.vi red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 viname=ndvi \
405            output=lsat7_2002.ndvi
406       r.colors lsat7_2002.ndvi color=ndvi
407       d.mon wx0
408       d.rast.leg lsat7_2002.ndvi
409       North Carolina dataset: NDVI
410
411   Calculation of ARVI
412       The calculation of ARVI from the reflectance values is done as follows:
413       g.region raster=lsat7_2002_toar.3 -p
414       i.vi blue=lsat7_2002_toar.1 red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 \
415            viname=arvi output=lsat7_2002.arvi
416       d.mon wx0
417       d.rast.leg lsat7_2002.arvi
418       North Carolina dataset: ARVI
419
420   Calculation of GARI
421       The calculation of GARI from the reflectance values is done as follows:
422       g.region raster=lsat7_2002_toar.3 -p
423       i.vi blue=lsat7_2002_toar.1 green=lsat7_2002_toar.2 red=lsat7_2002_toar.3 \
424            nir=lsat7_2002_toar.4 viname=gari output=lsat7_2002.gari
425       d.mon wx0
426       d.rast.leg lsat7_2002.gari
427       North Carolina dataset: GARI
428

NOTES

430       Originally from kepler.gps.caltech.edu (FAQ):
431
432       A FAQ on Vegetation in Remote Sensing
433       Written by Terrill W. Ray, Div. of Geological and  Planetary  Sciences,
434       California   Institute  of  Technology,  email:  terrill@mars1.gps.cal‐
435       tech.edu
436
437       Snail Mail:  Terrill Ray
438       Division of Geological and Planetary Sciences
439       Caltech, Mail Code 170-25
440       Pasadena, CA  91125
441

SEE ALSO

443        i.albedo, i.aster.toar, i.landsat.toar, i.atcorr, i.tasscap
444

REFERENCES

446       AVHRR, Landsat TM5:
447
448           ·   Bastiaanssen, W.G.M., 1995.  Regionalization  of  surface  flux
449               densities  and  moisture  indicators  in  composite  terrain; a
450               remote sensing approach under clear skies in mediterranean cli‐
451               mates.  PhD  thesis, Wageningen Agricultural Univ., The Nether‐
452               land, 271 pp.  (PDF)
453
454           ·   Index DataBase: List of available Indices
455

AUTHORS

457       Baburao Kamble, Asian Institute of Technology, Thailand
458       Yann Chemin, Asian Institute of Technology, Thailand
459
460       Last changed: $Date: 2018-03-24 12:22:48 +0100 (Sat, 24 Mar 2018) $
461

SOURCE CODE

463       Available at: i.vi source code (history)
464
465       Main index | Imagery index | Topics index | Keywords index |  Graphical
466       index | Full index
467
468       © 2003-2019 GRASS Development Team, GRASS GIS 7.6.0 Reference Manual
469
470
471
472GRASS 7.6.0                                                            i.vi(1)
Impressum