1AI::Categorizer::FeaturUesVeerctCoorn(t3r)ibuted Perl DoAcIu:m:eCnattaetgioornizer::FeatureVector(3)
2
3
4
6 AI::Categorizer::FeatureVector - Features vs. Values
7
9 my $f1 = new AI::Categorizer::FeatureVector
10 (features => {howdy => 2, doody => 3});
11 my $f2 = new AI::Categorizer::FeatureVector
12 (features => {doody => 1, whopper => 2});
13
14 @names = $f1->names;
15 $x = $f1->length;
16 $x = $f1->sum;
17 $x = $f1->includes('howdy');
18 $x = $f1->value('howdy');
19 $x = $f1->dot($f2);
20
21 $f3 = $f1->clone;
22 $f3 = $f1->intersection($f2);
23 $f3 = $f1->add($f2);
24
25 $h = $f1->as_hash;
26 $h = $f1->as_boolean_hash;
27
28 $f1->normalize;
29
31 This class implements a "feature vector", which is a flat data
32 structure indicating the values associated with a set of features. At
33 its base level, a FeatureVector usually represents the set of words in
34 a document, with the value for each feature indicating the number of
35 times each word appears in the document. However, the values are
36 arbitrary so they can represent other quantities as well, and
37 FeatureVectors may also be combined to represent the features of
38 multiple documents.
39
41 ...
42
44 Ken Williams, ken@mathforum.org
45
47 Copyright 2000-2003 Ken Williams. All rights reserved.
48
49 This library is free software; you can redistribute it and/or modify it
50 under the same terms as Perl itself.
51
53 AI::Categorizer(3), Storable(3)
54
55
56
57perl v5.28.1 2019-02-02 AI::Categorizer::FeatureVector(3)