1RNG(3) User Contributed Perl Documentation RNG(3)
2
3
4
6 PDL::GSL::RNG - PDL interface to RNG and randist routines in GSL
7
9 This is an interface to the rng and randist packages present in the GNU
10 Scientific Library.
11
13 use PDL;
14 use PDL::GSL::RNG;
15
16 $rng = PDL::GSL::RNG->new('taus');
17
18 $rng->set_seed(time());
19
20 $a=zeroes(5,5,5)
21
22 $rng->get_uniform($a); # inplace
23
24 $b=$rng->get_uniform(3,4,5); # creates new pdl
25
27 new
28 The new method initializes a new instance of the RNG.
29
30 The available RNGs are:
31
32 coveyou cmrg fishman18 fishman20 fishman2x gfsr4 knuthran
33 knuthran2 knuthran2002 lecuyer21 minstd mrg mt19937 mt19937_1999
34 mt19937_1998 r250 ran0 ran1 ran2 ran3 rand rand48 random128_bsd
35 random128_glibc2 random128_libc5 random256_bsd random256_glibc2
36 random256_libc5 random32_bsd random32_glibc2 random32_libc5
37 random64_bsd random64_glibc2 random64_libc5 random8_bsd
38 random8_glibc2 random8_libc5 random_bsd random_glibc2
39 random_libc5 randu ranf ranlux ranlux389 ranlxd1 ranlxd2 ranlxs0
40 ranlxs1 ranlxs2 ranmar slatec taus taus2 taus113 transputer tt800
41 uni uni32 vax waterman14 zuf default
42
43 The last one (default) uses the environment variable GSL_RNG_TYPE.
44
45 Note that only a few of these rngs are recommended for general use.
46 Please check the GSL documentation for more information.
47
48 Usage:
49
50 $blessed_ref = PDL::GSL::RNG->new($RNG_name);
51
52 Example:
53
54 $rng = PDL::GSL::RNG->new('taus');
55
56 set_seed
57 Sets the RNG seed.
58
59 Usage:
60
61 $rng->set_seed($integer);
62 # or
63 $rng = PDL::GSL::RNG->new('taus')->set_seed($integer);
64
65 Example:
66
67 $rng->set_seed(666);
68
69 min
70 Return the minimum value generable by this RNG.
71
72 Usage:
73
74 $integer = $rng->min();
75
76 Example:
77
78 $min = $rng->min(); $max = $rng->max();
79
80 max
81 Return the maximum value generable by the RNG.
82
83 Usage:
84
85 $integer = $rng->max();
86
87 Example:
88
89 $min = $rng->min(); $max = $rng->max();
90
91 name
92 Returns the name of the RNG.
93
94 Usage:
95
96 $string = $rng->name();
97
98 Example:
99
100 $name = $rng->name();
101
102 get
103 This function creates a piddle with given dimensions or accept an
104 existing piddle and fills it. get() returns integer values between a
105 minimum and a maximum specific to every RNG.
106
107 Usage:
108
109 $piddle = $rng->get($list_of_integers)
110 $rng->get($piddle);
111
112 Example:
113
114 $a = zeroes 5,6;
115 $o = $rng->get(10,10); $rng->get($a);
116
117 get_int
118 This function creates a piddle with given dimensions or accept an
119 existing piddle and fills it. get_int() returns integer values between
120 0 and $max.
121
122 Usage:
123
124 $piddle = $rng->get($max, $list_of_integers)
125 $rng->get($max, $piddle);
126
127 Example:
128
129 $a = zeroes 5,6; $max=100;
130 $o = $rng->get(10,10); $rng->get($a);
131
132 get_uniform
133 This function creates a piddle with given dimensions or accept an
134 existing piddle and fills it. get_uniform() returns values 0<=x<1,
135
136 Usage:
137
138 $piddle = $rng->get_uniform($list_of_integers)
139 $rng->get_uniform($piddle);
140
141 Example:
142
143 $a = zeroes 5,6; $max=100;
144 $o = $rng->get_uniform(10,10); $rng->get_uniform($a);
145
146 get_uniform_pos
147 This function creates a piddle with given dimensions or accept an
148 existing piddle and fills it. get_uniform_pos() returns values 0<x<1,
149
150 Usage:
151
152 $piddle = $rng->get_uniform_pos($list_of_integers)
153 $rng->get_uniform_pos($piddle);
154
155 Example:
156
157 $a = zeroes 5,6;
158 $o = $rng->get_uniform_pos(10,10); $rng->get_uniform_pos($a);
159
160 ran_shuffle
161 Shuffles values in piddle
162
163 Usage:
164
165 $rng->ran_shuffle($piddle);
166
167 ran_shuffle_vec
168 Shuffles values in piddle
169
170 Usage:
171
172 $rng->ran_shuffle_vec(@vec);
173
174 ran_choose
175 Chooses values from $inpiddle to $outpiddle.
176
177 Usage:
178
179 $rng->ran_choose($inpiddle,$outpiddle);
180
181 ran_choose_vec
182 Chooses $n values from @vec.
183
184 Usage:
185
186 @chosen = $rng->ran_choose_vec($n,@vec);
187
188 ran_gaussian
189 Fills output piddle with random values from Gaussian distribution with
190 mean zero and standard deviation $sigma.
191
192 Usage:
193
194 $piddle = $rng->ran_gaussian($sigma,[list of integers = output piddle dims]);
195 $rng->ran_gaussian($sigma, $output_piddle);
196
197 Example:
198
199 $o = $rng->ran_gaussian($sigma,10,10);
200 $rng->ran_gaussian($sigma,$a);
201
202 ran_gaussian_var
203 This method is similar to ran_gaussian except that it takes the
204 parameters of the distribution as a piddle and returns a piddle of
205 equal dimensions.
206
207 Usage:
208
209 $piddle = $rng->ran_gaussian_var($sigma_piddle);
210 $rng->ran_gaussian_var($sigma_piddle, $output_piddle);
211
212 Example:
213
214 $sigma_pdl = rvals zeroes 11,11;
215 $o = $rng->ran_gaussian_var($sigma_pdl);
216
217 ran_additive_gaussian
218 Add Gaussian noise of given sigma to a piddle.
219
220 Usage:
221
222 $rng->ran_additive_gaussian($sigma,$piddle);
223
224 Example:
225
226 $rng->ran_additive_gaussian(1,$image);
227
228 ran_bivariate_gaussian
229 Generates $n bivariate gaussian random deviates.
230
231 Usage:
232
233 $piddle = $rng->ran_bivariate_gaussian($sigma_x,$sigma_y,$rho,$n);
234
235 Example:
236
237 $o = $rng->ran_bivariate_gaussian(1,2,0.5,1000);
238
239 ran_poisson
240 Fills output piddle by with random integer values from the Poisson
241 distribution with mean $mu.
242
243 Usage:
244
245 $piddle = $rng->ran_poisson($mu,[list of integers = output piddle dims]);
246 $rng->ran_poisson($mu,$output_piddle);
247
248 ran_poisson_var
249 Similar to ran_poisson except that it takes the distribution parameters
250 as a piddle and returns a piddle of equal dimensions.
251
252 Usage:
253
254 $piddle = $rng->ran_poisson_var($mu_piddle);
255
256 ran_additive_poisson
257 Add Poisson noise of given $mu to a $piddle.
258
259 Usage:
260
261 $rng->ran_additive_poisson($mu,$piddle);
262
263 Example:
264
265 $rng->ran_additive_poisson(1,$image);
266
267 ran_feed_poisson
268 This method simulates shot noise, taking the values of piddle as values
269 for $mu to be fed in the poissonian RNG.
270
271 Usage:
272
273 $rng->ran_feed_poisson($piddle);
274
275 Example:
276
277 $rng->ran_feed_poisson($image);
278
279 ran_bernoulli
280 Fills output piddle with random values 0 or 1, the result of a
281 Bernoulli trial with probability $p.
282
283 Usage:
284
285 $piddle = $rng->ran_bernoulli($p,[list of integers = output piddle dims]);
286 $rng->ran_bernoulli($p,$output_piddle);
287
288 ran_bernoulli_var
289 Similar to ran_bernoulli except that it takes the distribution
290 parameters as a piddle and returns a piddle of equal dimensions.
291
292 Usage:
293
294 $piddle = $rng->ran_bernoulli_var($p_piddle);
295
296 ran_beta
297 Fills output piddle with random variates from the beta distribution
298 with parameters $a and $b.
299
300 Usage:
301
302 $piddle = $rng->ran_beta($a,$b,[list of integers = output piddle dims]);
303 $rng->ran_beta($a,$b,$output_piddle);
304
305 ran_beta_var
306 Similar to ran_beta except that it takes the distribution parameters as
307 a piddle and returns a piddle of equal dimensions.
308
309 Usage:
310
311 $piddle = $rng->ran_beta_var($a_piddle, $b_piddle);
312
313 ran_binomial
314 Fills output piddle with random integer values from the binomial
315 distribution, the number of successes in $n independent trials with
316 probability $p.
317
318 Usage:
319
320 $piddle = $rng->ran_binomial($p,$n,[list of integers = output piddle dims]);
321 $rng->ran_binomial($p,$n,$output_piddle);
322
323 ran_binomial_var
324 Similar to ran_binomial except that it takes the distribution
325 parameters as a piddle and returns a piddle of equal dimensions.
326
327 Usage:
328
329 $piddle = $rng->ran_binomial_var($p_piddle, $n_piddle);
330
331 ran_cauchy
332 Fills output piddle with random variates from the Cauchy distribution
333 with scale parameter $a.
334
335 Usage:
336
337 $piddle = $rng->ran_cauchy($a,[list of integers = output piddle dims]);
338 $rng->ran_cauchy($a,$output_piddle);
339
340 ran_cauchy_var
341 Similar to ran_cauchy except that it takes the distribution parameters
342 as a piddle and returns a piddle of equal dimensions.
343
344 Usage:
345
346 $piddle = $rng->ran_cauchy_var($a_piddle);
347
348 ran_chisq
349 Fills output piddle with random variates from the chi-squared
350 distribution with $nu degrees of freedom.
351
352 Usage:
353
354 $piddle = $rng->ran_chisq($nu,[list of integers = output piddle dims]);
355 $rng->ran_chisq($nu,$output_piddle);
356
357 ran_chisq_var
358 Similar to ran_chisq except that it takes the distribution parameters
359 as a piddle and returns a piddle of equal dimensions.
360
361 Usage:
362
363 $piddle = $rng->ran_chisq_var($nu_piddle);
364
365 ran_exponential
366 Fills output piddle with random variates from the exponential
367 distribution with mean $mu.
368
369 Usage:
370
371 $piddle = $rng->ran_exponential($mu,[list of integers = output piddle dims]);
372 $rng->ran_exponential($mu,$output_piddle);
373
374 ran_exponential_var
375 Similar to ran_exponential except that it takes the distribution
376 parameters as a piddle and returns a piddle of equal dimensions.
377
378 Usage:
379
380 $piddle = $rng->ran_exponential_var($mu_piddle);
381
382 ran_exppow
383 Fills output piddle with random variates from the exponential power
384 distribution with scale parameter $a and exponent $b.
385
386 Usage:
387
388 $piddle = $rng->ran_exppow($mu,$a,[list of integers = output piddle dims]);
389 $rng->ran_exppow($mu,$a,$output_piddle);
390
391 ran_exppow_var
392 Similar to ran_exppow except that it takes the distribution parameters
393 as a piddle and returns a piddle of equal dimensions.
394
395 Usage:
396
397 $piddle = $rng->ran_exppow_var($mu_piddle, $a_piddle);
398
399 ran_fdist
400 Fills output piddle with random variates from the F-distribution with
401 degrees of freedom $nu1 and $nu2.
402
403 Usage:
404
405 $piddle = $rng->ran_fdist($nu1, $nu2,[list of integers = output piddle dims]);
406 $rng->ran_fdist($nu1, $nu2,$output_piddle);
407
408 ran_fdist_var
409 Similar to ran_fdist except that it takes the distribution parameters
410 as a piddle and returns a piddle of equal dimensions.
411
412 Usage:
413
414 $piddle = $rng->ran_fdist_var($nu1_piddle, $nu2_piddle);
415
416 ran_flat
417 Fills output piddle with random variates from the flat (uniform)
418 distribution from $a to $b.
419
420 Usage:
421
422 $piddle = $rng->ran_flat($a,$b,[list of integers = output piddle dims]);
423 $rng->ran_flat($a,$b,$output_piddle);
424
425 ran_flat_var
426 Similar to ran_flat except that it takes the distribution parameters as
427 a piddle and returns a piddle of equal dimensions.
428
429 Usage:
430
431 $piddle = $rng->ran_flat_var($a_piddle, $b_piddle);
432
433 ran_gamma
434 Fills output piddle with random variates from the gamma distribution.
435
436 Usage:
437
438 $piddle = $rng->ran_gamma($a,$b,[list of integers = output piddle dims]);
439 $rng->ran_gamma($a,$b,$output_piddle);
440
441 ran_gamma_var
442 Similar to ran_gamma except that it takes the distribution parameters
443 as a piddle and returns a piddle of equal dimensions.
444
445 Usage:
446
447 $piddle = $rng->ran_gamma_var($a_piddle, $b_piddle);
448
449 ran_geometric
450 Fills output piddle with random integer values from the geometric
451 distribution, the number of independent trials with probability $p
452 until the first success.
453
454 Usage:
455
456 $piddle = $rng->ran_geometric($p,[list of integers = output piddle dims]);
457 $rng->ran_geometric($p,$output_piddle);
458
459 ran_geometric_var
460 Similar to ran_geometric except that it takes the distribution
461 parameters as a piddle and returns a piddle of equal dimensions.
462
463 Usage:
464
465 $piddle = $rng->ran_geometric_var($p_piddle);
466
467 ran_gumbel1
468 Fills output piddle with random variates from the Type-1 Gumbel
469 distribution.
470
471 Usage:
472
473 $piddle = $rng->ran_gumbel1($a,$b,[list of integers = output piddle dims]);
474 $rng->ran_gumbel1($a,$b,$output_piddle);
475
476 ran_gumbel1_var
477 Similar to ran_gumbel1 except that it takes the distribution parameters
478 as a piddle and returns a piddle of equal dimensions.
479
480 Usage:
481
482 $piddle = $rng->ran_gumbel1_var($a_piddle, $b_piddle);
483
484 ran_gumbel2
485 Fills output piddle with random variates from the Type-2 Gumbel
486 distribution.
487
488 Usage:
489
490 $piddle = $rng->ran_gumbel2($a,$b,[list of integers = output piddle dims]);
491 $rng->ran_gumbel2($a,$b,$output_piddle);
492
493 ran_gumbel2_var
494 Similar to ran_gumbel2 except that it takes the distribution parameters
495 as a piddle and returns a piddle of equal dimensions.
496
497 Usage:
498
499 $piddle = $rng->ran_gumbel2_var($a_piddle, $b_piddle);
500
501 ran_hypergeometric
502 Fills output piddle with random integer values from the hypergeometric
503 distribution. If a population contains $n1 elements of type 1 and $n2
504 elements of type 2 then the hypergeometric distribution gives the
505 probability of obtaining $x elements of type 1 in $t samples from the
506 population without replacement.
507
508 Usage:
509
510 $piddle = $rng->ran_hypergeometric($n1, $n2, $t,[list of integers = output piddle dims]);
511 $rng->ran_hypergeometric($n1, $n2, $t,$output_piddle);
512
513 ran_hypergeometric_var
514 Similar to ran_hypergeometric except that it takes the distribution
515 parameters as a piddle and returns a piddle of equal dimensions.
516
517 Usage:
518
519 $piddle = $rng->ran_hypergeometric_var($n1_piddle, $n2_piddle, $t_piddle);
520
521 ran_laplace
522 Fills output piddle with random variates from the Laplace distribution
523 with width $a.
524
525 Usage:
526
527 $piddle = $rng->ran_laplace($a,[list of integers = output piddle dims]);
528 $rng->ran_laplace($a,$output_piddle);
529
530 ran_laplace_var
531 Similar to ran_laplace except that it takes the distribution parameters
532 as a piddle and returns a piddle of equal dimensions.
533
534 Usage:
535
536 $piddle = $rng->ran_laplace_var($a_piddle);
537
538 ran_levy
539 Fills output piddle with random variates from the Levy symmetric stable
540 distribution with scale $c and exponent $alpha.
541
542 Usage:
543
544 $piddle = $rng->ran_levy($mu,$a,[list of integers = output piddle dims]);
545 $rng->ran_levy($mu,$a,$output_piddle);
546
547 ran_levy_var
548 Similar to ran_levy except that it takes the distribution parameters as
549 a piddle and returns a piddle of equal dimensions.
550
551 Usage:
552
553 $piddle = $rng->ran_levy_var($mu_piddle, $a_piddle);
554
555 ran_logarithmic
556 Fills output piddle with random integer values from the logarithmic
557 distribution.
558
559 Usage:
560
561 $piddle = $rng->ran_logarithmic($p,[list of integers = output piddle dims]);
562 $rng->ran_logarithmic($p,$output_piddle);
563
564 ran_logarithmic_var
565 Similar to ran_logarithmic except that it takes the distribution
566 parameters as a piddle and returns a piddle of equal dimensions.
567
568 Usage:
569
570 $piddle = $rng->ran_logarithmic_var($p_piddle);
571
572 ran_logistic
573 Fills output piddle with random random variates from the logistic
574 distribution.
575
576 Usage:
577
578 $piddle = $rng->ran_logistic($m,[list of integers = output piddle dims]u)
579 $rng->ran_logistic($m,$output_piddle)
580
581 ran_logistic_var
582 Similar to ran_logistic except that it takes the distribution
583 parameters as a piddle and returns a piddle of equal dimensions.
584
585 Usage:
586
587 $piddle = $rng->ran_logistic_var($m_piddle);
588
589 ran_lognormal
590 Fills output piddle with random variates from the lognormal
591 distribution with parameters $mu (location) and $sigma (scale).
592
593 Usage:
594
595 $piddle = $rng->ran_lognormal($mu,$sigma,[list of integers = output piddle dims]);
596 $rng->ran_lognormal($mu,$sigma,$output_piddle);
597
598 ran_lognormal_var
599 Similar to ran_lognormal except that it takes the distribution
600 parameters as a piddle and returns a piddle of equal dimensions.
601
602 Usage:
603
604 $piddle = $rng->ran_lognormal_var($mu_piddle, $sigma_piddle);
605
606 ran_negative_binomial
607 Fills output piddle with random integer values from the negative
608 binomial distribution, the number of failures occurring before $n
609 successes in independent trials with probability $p of success. Note
610 that $n is not required to be an integer.
611
612 Usage:
613
614 $piddle = $rng->ran_negative_binomial($p,$n,[list of integers = output piddle dims]);
615 $rng->ran_negative_binomial($p,$n,$output_piddle);
616
617 ran_negative_binomial_var
618 Similar to ran_negative_binomial except that it takes the distribution
619 parameters as a piddle and returns a piddle of equal dimensions.
620
621 Usage:
622
623 $piddle = $rng->ran_negative_binomial_var($p_piddle, $n_piddle);
624
625 ran_pareto
626 Fills output piddle with random variates from the Pareto distribution
627 of order $a and scale $b.
628
629 Usage:
630
631 $piddle = $rng->ran_pareto($a,$b,[list of integers = output piddle dims]);
632 $rng->ran_pareto($a,$b,$output_piddle);
633
634 ran_pareto_var
635 Similar to ran_pareto except that it takes the distribution parameters
636 as a piddle and returns a piddle of equal dimensions.
637
638 Usage:
639
640 $piddle = $rng->ran_pareto_var($a_piddle, $b_piddle);
641
642 ran_pascal
643 Fills output piddle with random integer values from the Pascal
644 distribution. The Pascal distribution is simply a negative binomial
645 distribution (see ran_negative_binomial) with an integer value of $n.
646
647 Usage:
648
649 $piddle = $rng->ran_pascal($p,$n,[list of integers = output piddle dims]);
650 $rng->ran_pascal($p,$n,$output_piddle);
651
652 ran_pascal_var
653 Similar to ran_pascal except that it takes the distribution parameters
654 as a piddle and returns a piddle of equal dimensions.
655
656 Usage:
657
658 $piddle = $rng->ran_pascal_var($p_piddle, $n_piddle);
659
660 ran_rayleigh
661 Fills output piddle with random variates from the Rayleigh distribution
662 with scale parameter $sigma.
663
664 Usage:
665
666 $piddle = $rng->ran_rayleigh($sigma,[list of integers = output piddle dims]);
667 $rng->ran_rayleigh($sigma,$output_piddle);
668
669 ran_rayleigh_var
670 Similar to ran_rayleigh except that it takes the distribution
671 parameters as a piddle and returns a piddle of equal dimensions.
672
673 Usage:
674
675 $piddle = $rng->ran_rayleigh_var($sigma_piddle);
676
677 ran_rayleigh_tail
678 Fills output piddle with random variates from the tail of the Rayleigh
679 distribution with scale parameter $sigma and a lower limit of $a.
680
681 Usage:
682
683 $piddle = $rng->ran_rayleigh_tail($a,$sigma,[list of integers = output piddle dims]);
684 $rng->ran_rayleigh_tail($a,$sigma,$output_piddle);
685
686 ran_rayleigh_tail_var
687 Similar to ran_rayleigh_tail except that it takes the distribution
688 parameters as a piddle and returns a piddle of equal dimensions.
689
690 Usage:
691
692 $piddle = $rng->ran_rayleigh_tail_var($a_piddle, $sigma_piddle);
693
694 ran_tdist
695 Fills output piddle with random variates from the t-distribution (AKA
696 Student's t-distribution) with $nu degrees of freedom.
697
698 Usage:
699
700 $piddle = $rng->ran_tdist($nu,[list of integers = output piddle dims]);
701 $rng->ran_tdist($nu,$output_piddle);
702
703 ran_tdist_var
704 Similar to ran_tdist except that it takes the distribution parameters
705 as a piddle and returns a piddle of equal dimensions.
706
707 Usage:
708
709 $piddle = $rng->ran_tdist_var($nu_piddle);
710
711 ran_ugaussian_tail
712 Fills output piddle with random variates from the upper tail of a
713 Gaussian distribution with "standard deviation = 1" (AKA unit Gaussian
714 distribution).
715
716 Usage:
717
718 $piddle = $rng->ran_ugaussian_tail($tail,[list of integers = output piddle dims]);
719 $rng->ran_ugaussian_tail($tail,$output_piddle);
720
721 ran_ugaussian_tail_var
722 Similar to ran_ugaussian_tail except that it takes the distribution
723 parameters as a piddle and returns a piddle of equal dimensions.
724
725 Usage:
726
727 $piddle = $rng->ran_ugaussian_tail_var($tail_piddle);
728
729 ran_weibull
730 Fills output piddle with random variates from the Weibull distribution.
731
732 Usage:
733
734 $piddle = $rng->ran_weibull($mu,$a,[list of integers = output piddle dims]);
735 $rng->ran_weibull($mu,$a,$output_piddle);
736
737 ran_weibull_var
738 Similar to ran_weibull except that it takes the distribution parameters
739 as a piddle and returns a piddle of equal dimensions.
740
741 Usage:
742
743 $piddle = $rng->ran_weibull_var($mu_piddle, $a_piddle);
744
745 ran_dir
746 Returns $n random vectors in $ndim dimensions.
747
748 Usage:
749
750 $piddle = $rng->ran_dir($ndim,$n);
751
752 Example:
753
754 $o = $rng->ran_dir($ndim,$n);
755
756 ran_discrete_preproc
757 This method returns a handle that must be used when calling
758 ran_discrete. You specify the probability of the integer number that
759 are returned by ran_discrete.
760
761 Usage:
762
763 $discrete_dist_handle = $rng->ran_discrete_preproc($double_piddle_prob);
764
765 Example:
766
767 $prob = pdl [0.1,0.3,0.6];
768 $ddh = $rng->ran_discrete_preproc($prob);
769 $o = $rng->ran_discrete($discrete_dist_handle,100);
770
771 ran_discrete
772 Is used to get the desired samples once a proper handle has been
773 enstablished (see ran_discrete_preproc()).
774
775 Usage:
776
777 $piddle = $rng->ran_discrete($discrete_dist_handle,$num);
778
779 Example:
780
781 $prob = pdl [0.1,0.3,0.6];
782 $ddh = $rng->ran_discrete_preproc($prob);
783 $o = $rng->ran_discrete($discrete_dist_handle,100);
784
785 ran_ver
786 Returns a piddle with $n values generated by the Verhulst map from $x0
787 and parameter $r.
788
789 Usage:
790
791 $rng->ran_ver($x0, $r, $n);
792
793 ran_caos
794 Returns values from Verhuls map with "$r=4.0" and randomly chosen $x0.
795 The values are scaled by $m.
796
797 Usage:
798
799 $rng->ran_caos($m,$n);
800
802 Feedback is welcome. Log bugs in the PDL bug database (the database is
803 always linked from <http://pdl.perl.org/>).
804
806 PDL
807
808 The GSL documentation is online at
809 <http://www.gnu.org/software/gsl/manual/html_node/>
810
812 This file copyright (C) 1999 Christian Pellegrin
813 <chri@infis.univ.trieste.it> Docs mangled by C. Soeller. All rights
814 reserved. There is no warranty. You are allowed to redistribute this
815 software / documentation under certain conditions. For details, see the
816 file COPYING in the PDL distribution. If this file is separated from
817 the PDL distribution, the copyright notice should be included in the
818 file.
819
820 The GSL RNG and randist modules were written by James Theiler.
821
822
823
824perl v5.28.1 2019-02-14 RNG(3)