1math::linearalgebra(n) Tcl Math Library math::linearalgebra(n)
2
3
4
5______________________________________________________________________________
6
8 math::linearalgebra - Linear Algebra
9
11 package require Tcl ?8.4?
12
13 package require math::linearalgebra ?1.1.5?
14
15 ::math::linearalgebra::mkVector ndim value
16
17 ::math::linearalgebra::mkUnitVector ndim ndir
18
19 ::math::linearalgebra::mkMatrix nrows ncols value
20
21 ::math::linearalgebra::getrow matrix row ?imin? ?imax?
22
23 ::math::linearalgebra::setrow matrix row newvalues ?imin? ?imax?
24
25 ::math::linearalgebra::getcol matrix col ?imin? ?imax?
26
27 ::math::linearalgebra::setcol matrix col newvalues ?imin? ?imax?
28
29 ::math::linearalgebra::getelem matrix row col
30
31 ::math::linearalgebra::setelem matrix row ?col? newvalue
32
33 ::math::linearalgebra::swaprows matrix irow1 irow2 ?imin? ?imax?
34
35 ::math::linearalgebra::swapcols matrix icol1 icol2 ?imin? ?imax?
36
37 ::math::linearalgebra::show obj ?format? ?rowsep? ?colsep?
38
39 ::math::linearalgebra::dim obj
40
41 ::math::linearalgebra::shape obj
42
43 ::math::linearalgebra::conforming type obj1 obj2
44
45 ::math::linearalgebra::symmetric matrix ?eps?
46
47 ::math::linearalgebra::norm vector type
48
49 ::math::linearalgebra::norm_one vector
50
51 ::math::linearalgebra::norm_two vector
52
53 ::math::linearalgebra::norm_max vector ?index?
54
55 ::math::linearalgebra::normMatrix matrix type
56
57 ::math::linearalgebra::dotproduct vect1 vect2
58
59 ::math::linearalgebra::unitLengthVector vector
60
61 ::math::linearalgebra::normalizeStat mv
62
63 ::math::linearalgebra::axpy scale mv1 mv2
64
65 ::math::linearalgebra::add mv1 mv2
66
67 ::math::linearalgebra::sub mv1 mv2
68
69 ::math::linearalgebra::scale scale mv
70
71 ::math::linearalgebra::rotate c s vect1 vect2
72
73 ::math::linearalgebra::transpose matrix
74
75 ::math::linearalgebra::matmul mv1 mv2
76
77 ::math::linearalgebra::angle vect1 vect2
78
79 ::math::linearalgebra::crossproduct vect1 vect2
80
81 ::math::linearalgebra::matmul mv1 mv2
82
83 ::math::linearalgebra::mkIdentity size
84
85 ::math::linearalgebra::mkDiagonal diag
86
87 ::math::linearalgebra::mkRandom size
88
89 ::math::linearalgebra::mkTriangular size ?uplo? ?value?
90
91 ::math::linearalgebra::mkHilbert size
92
93 ::math::linearalgebra::mkDingdong size
94
95 ::math::linearalgebra::mkOnes size
96
97 ::math::linearalgebra::mkMoler size
98
99 ::math::linearalgebra::mkFrank size
100
101 ::math::linearalgebra::mkBorder size
102
103 ::math::linearalgebra::mkWilkinsonW+ size
104
105 ::math::linearalgebra::mkWilkinsonW- size
106
107 ::math::linearalgebra::solveGauss matrix bvect
108
109 ::math::linearalgebra::solvePGauss matrix bvect
110
111 ::math::linearalgebra::solveTriangular matrix bvect ?uplo?
112
113 ::math::linearalgebra::solveGaussBand matrix bvect
114
115 ::math::linearalgebra::solveTriangularBand matrix bvect
116
117 ::math::linearalgebra::determineSVD A eps
118
119 ::math::linearalgebra::eigenvectorsSVD A eps
120
121 ::math::linearalgebra::leastSquaresSVD A y qmin eps
122
123 ::math::linearalgebra::choleski matrix
124
125 ::math::linearalgebra::orthonormalizeColumns matrix
126
127 ::math::linearalgebra::orthonormalizeRows matrix
128
129 ::math::linearalgebra::dger matrix alpha x y ?scope?
130
131 ::math::linearalgebra::dgetrf matrix
132
133 ::math::linearalgebra::det matrix
134
135 ::math::linearalgebra::largesteigen matrix tolerance maxiter
136
137 ::math::linearalgebra::to_LA mv
138
139 ::math::linearalgebra::from_LA mv
140
141______________________________________________________________________________
142
144 This package offers both low-level procedures and high-level algorithms
145 to deal with linear algebra problems:
146
147 · robust solution of linear equations or least squares problems
148
149 · determining eigenvectors and eigenvalues of symmetric matrices
150
151 · various decompositions of general matrices or matrices of a spe‐
152 cific form
153
154 · (limited) support for matrices in band storage, a common type of
155 sparse matrices
156
157 It arose as a re-implementation of Hume's LA package and the desire to
158 offer low-level procedures as found in the well-known BLAS library.
159 Matrices are implemented as lists of lists rather linear lists with
160 reserved elements, as in the original LA package, as it was found that
161 such an implementation is actually faster.
162
163 It is advisable, however, to use the procedures that are offered, such
164 as setrow and getrow, rather than rely on this representation explic‐
165 itly: that way it is to switch to a possibly even faster compiled
166 implementation that supports the same API.
167
168 Note: When using this package in combination with Tk, there may be a
169 naming conflict, as both this package and Tk define a command scale.
170 See the NAMING CONFLICT section below.
171
173 The package defines the following public procedures (several exist as
174 specialised procedures, see below):
175
176 Constructing matrices and vectors
177
178 ::math::linearalgebra::mkVector ndim value
179 Create a vector with ndim elements, each with the value value.
180
181 integer ndim
182 Dimension of the vector (number of components)
183
184 double value
185 Uniform value to be used (default: 0.0)
186
187
188 ::math::linearalgebra::mkUnitVector ndim ndir
189 Create a unit vector in ndim-dimensional space, along the ndir-
190 th direction.
191
192 integer ndim
193 Dimension of the vector (number of components)
194
195 integer ndir
196 Direction (0, ..., ndim-1)
197
198
199 ::math::linearalgebra::mkMatrix nrows ncols value
200 Create a matrix with nrows rows and ncols columns. All elements
201 have the value value.
202
203 integer nrows
204 Number of rows
205
206 integer ncols
207 Number of columns
208
209 double value
210 Uniform value to be used (default: 0.0)
211
212
213 ::math::linearalgebra::getrow matrix row ?imin? ?imax?
214 Returns a single row of a matrix as a list
215
216 list matrix
217 Matrix in question
218
219 integer row
220 Index of the row to return
221
222 integer imin
223 Minimum index of the column (default: 0)
224
225 integer imax
226 Maximum index of the column (default: ncols-1)
227
228
229 ::math::linearalgebra::setrow matrix row newvalues ?imin? ?imax?
230 Set a single row of a matrix to new values (this list must have
231 the same number of elements as the number of columns in the
232 matrix)
233
234 list matrix
235 name of the matrix in question
236
237 integer row
238 Index of the row to update
239
240 list newvalues
241 List of new values for the row
242
243 integer imin
244 Minimum index of the column (default: 0)
245
246 integer imax
247 Maximum index of the column (default: ncols-1)
248
249
250 ::math::linearalgebra::getcol matrix col ?imin? ?imax?
251 Returns a single column of a matrix as a list
252
253 list matrix
254 Matrix in question
255
256 integer col
257 Index of the column to return
258
259 integer imin
260 Minimum index of the row (default: 0)
261
262 integer imax
263 Maximum index of the row (default: nrows-1)
264
265
266 ::math::linearalgebra::setcol matrix col newvalues ?imin? ?imax?
267 Set a single column of a matrix to new values (this list must
268 have the same number of elements as the number of rows in the
269 matrix)
270
271 list matrix
272 name of the matrix in question
273
274 integer col
275 Index of the column to update
276
277 list newvalues
278 List of new values for the column
279
280 integer imin
281 Minimum index of the row (default: 0)
282
283 integer imax
284 Maximum index of the row (default: nrows-1)
285
286
287 ::math::linearalgebra::getelem matrix row col
288 Returns a single element of a matrix/vector
289
290 list matrix
291 Matrix or vector in question
292
293 integer row
294 Row of the element
295
296 integer col
297 Column of the element (not present for vectors)
298
299
300 ::math::linearalgebra::setelem matrix row ?col? newvalue
301 Set a single element of a matrix (or vector) to a new value
302
303 list matrix
304 name of the matrix in question
305
306 integer row
307 Row of the element
308
309 integer col
310 Column of the element (not present for vectors)
311
312
313 ::math::linearalgebra::swaprows matrix irow1 irow2 ?imin? ?imax?
314 Swap two rows in a matrix completely or only a selected part
315
316 list matrix
317 name of the matrix in question
318
319 integer irow1
320 Index of first row
321
322 integer irow2
323 Index of second row
324
325 integer imin
326 Minimum column index (default: 0)
327
328 integer imin
329 Maximum column index (default: ncols-1)
330
331
332 ::math::linearalgebra::swapcols matrix icol1 icol2 ?imin? ?imax?
333 Swap two columns in a matrix completely or only a selected part
334
335 list matrix
336 name of the matrix in question
337
338 integer irow1
339 Index of first column
340
341 integer irow2
342 Index of second column
343
344 integer imin
345 Minimum row index (default: 0)
346
347 integer imin
348 Maximum row index (default: nrows-1)
349
350 Querying matrices and vectors
351
352 ::math::linearalgebra::show obj ?format? ?rowsep? ?colsep?
353 Return a string representing the vector or matrix, for easy
354 printing. (There is currently no way to print fixed sets of
355 columns)
356
357 list obj
358 Matrix or vector in question
359
360 string format
361 Format for printing the numbers (default: %6.4f)
362
363 string rowsep
364 String to use for separating rows (default: newline)
365
366 string colsep
367 String to use for separating columns (default: space)
368
369
370 ::math::linearalgebra::dim obj
371 Returns the number of dimensions for the object (either 0 for a
372 scalar, 1 for a vector and 2 for a matrix)
373
374 any obj
375 Scalar, vector, or matrix
376
377
378 ::math::linearalgebra::shape obj
379 Returns the number of elements in each dimension for the object
380 (either an empty list for a scalar, a single number for a vector
381 and a list of the number of rows and columns for a matrix)
382
383 any obj
384 Scalar, vector, or matrix
385
386
387 ::math::linearalgebra::conforming type obj1 obj2
388 Checks if two objects (vector or matrix) have conforming shapes,
389 that is if they can be applied in an operation like addition or
390 matrix multiplication.
391
392 string type
393 Type of check:
394
395 · "shape" - the two objects have the same shape (for
396 all element-wise operations)
397
398 · "rows" - the two objects have the same number of
399 rows (for use as A and b in a system of linear
400 equations Ax = b
401
402 · "matmul" - the first object has the same number of
403 columns as the number of rows of the second
404 object. Useful for matrix-matrix or matrix-vector
405 multiplication.
406
407 list obj1
408 First vector or matrix (left operand)
409
410 list obj2
411 Second vector or matrix (right operand)
412
413
414 ::math::linearalgebra::symmetric matrix ?eps?
415 Checks if the given (square) matrix is symmetric. The argument
416 eps is the tolerance.
417
418 list matrix
419 Matrix to be inspected
420
421 float eps
422 Tolerance for determining approximate equality (defaults
423 to 1.0e-8)
424
425 Basic operations
426
427 ::math::linearalgebra::norm vector type
428 Returns the norm of the given vector. The type argument can be:
429 1, 2, inf or max, respectively the sum of absolute values, the
430 ordinary Euclidean norm or the max norm.
431
432 list vector
433 Vector, list of coefficients
434
435 string type
436 Type of norm (default: 2, the Euclidean norm)
437
438 ::math::linearalgebra::norm_one vector
439 Returns the L1 norm of the given vector, the sum of absolute
440 values
441
442 list vector
443 Vector, list of coefficients
444
445 ::math::linearalgebra::norm_two vector
446 Returns the L2 norm of the given vector, the ordinary Euclidean
447 norm
448
449 list vector
450 Vector, list of coefficients
451
452 ::math::linearalgebra::norm_max vector ?index?
453 Returns the Linf norm of the given vector, the maximum absolute
454 coefficient
455
456 list vector
457 Vector, list of coefficients
458
459 integer index
460 (optional) if non zero, returns a list made of the maxi‐
461 mum value and the index where that maximum was found. if
462 zero, returns the maximum value.
463
464
465 ::math::linearalgebra::normMatrix matrix type
466 Returns the norm of the given matrix. The type argument can be:
467 1, 2, inf or max, respectively the sum of absolute values, the
468 ordinary Euclidean norm or the max norm.
469
470 list matrix
471 Matrix, list of row vectors
472
473 string type
474 Type of norm (default: 2, the Euclidean norm)
475
476
477 ::math::linearalgebra::dotproduct vect1 vect2
478 Determine the inproduct or dot product of two vectors. These
479 must have the same shape (number of dimensions)
480
481 list vect1
482 First vector, list of coefficients
483
484 list vect2
485 Second vector, list of coefficients
486
487
488 ::math::linearalgebra::unitLengthVector vector
489 Return a vector in the same direction with length 1.
490
491 list vector
492 Vector to be normalized
493
494
495 ::math::linearalgebra::normalizeStat mv
496 Normalize the matrix or vector in a statistical sense: the mean
497 of the elements of the columns of the result is zero and the
498 standard deviation is 1.
499
500 list mv
501 Vector or matrix to be normalized in the above sense
502
503
504 ::math::linearalgebra::axpy scale mv1 mv2
505 Return a vector or matrix that results from a "daxpy" operation,
506 that is: compute a*x+y (a a scalar and x and y both vectors or
507 matrices of the same shape) and return the result.
508
509 Specialised variants are: axpy_vect and axpy_mat (slightly
510 faster, but no check on the arguments)
511
512 double scale
513 The scale factor for the first vector/matrix (a)
514
515 list mv1
516 First vector or matrix (x)
517
518 list mv2
519 Second vector or matrix (y)
520
521
522 ::math::linearalgebra::add mv1 mv2
523 Return a vector or matrix that is the sum of the two arguments
524 (x+y)
525
526 Specialised variants are: add_vect and add_mat (slightly faster,
527 but no check on the arguments)
528
529 list mv1
530 First vector or matrix (x)
531
532 list mv2
533 Second vector or matrix (y)
534
535
536 ::math::linearalgebra::sub mv1 mv2
537 Return a vector or matrix that is the difference of the two
538 arguments (x-y)
539
540 Specialised variants are: sub_vect and sub_mat (slightly faster,
541 but no check on the arguments)
542
543 list mv1
544 First vector or matrix (x)
545
546 list mv2
547 Second vector or matrix (y)
548
549
550 ::math::linearalgebra::scale scale mv
551 Scale a vector or matrix and return the result, that is: compute
552 a*x.
553
554 Specialised variants are: scale_vect and scale_mat (slightly
555 faster, but no check on the arguments)
556
557 double scale
558 The scale factor for the vector/matrix (a)
559
560 list mv
561 Vector or matrix (x)
562
563
564 ::math::linearalgebra::rotate c s vect1 vect2
565 Apply a planar rotation to two vectors and return the result as
566 a list of two vectors: c*x-s*y and s*x+c*y. In algorithms you
567 can often easily determine the cosine and sine of the angle, so
568 it is more efficient to pass that information directly.
569
570 double c
571 The cosine of the angle
572
573 double s
574 The sine of the angle
575
576 list vect1
577 First vector (x)
578
579 list vect2
580 Seocnd vector (x)
581
582
583 ::math::linearalgebra::transpose matrix
584 Transpose a matrix
585
586 list matrix
587 Matrix to be transposed
588
589
590 ::math::linearalgebra::matmul mv1 mv2
591 Multiply a vector/matrix with another vector/matrix. The result
592 is a matrix, if both x and y are matrices or both are vectors,
593 in which case the "outer product" is computed. If one is a vec‐
594 tor and the other is a matrix, then the result is a vector.
595
596 list mv1
597 First vector/matrix (x)
598
599 list mv2
600 Second vector/matrix (y)
601
602
603 ::math::linearalgebra::angle vect1 vect2
604 Compute the angle between two vectors (in radians)
605
606 list vect1
607 First vector
608
609 list vect2
610 Second vector
611
612
613 ::math::linearalgebra::crossproduct vect1 vect2
614 Compute the cross product of two (three-dimensional) vectors
615
616 list vect1
617 First vector
618
619 list vect2
620 Second vector
621
622
623 ::math::linearalgebra::matmul mv1 mv2
624 Multiply a vector/matrix with another vector/matrix. The result
625 is a matrix, if both x and y are matrices or both are vectors,
626 in which case the "outer product" is computed. If one is a vec‐
627 tor and the other is a matrix, then the result is a vector.
628
629 list mv1
630 First vector/matrix (x)
631
632 list mv2
633 Second vector/matrix (y)
634
635 Common matrices and test matrices
636
637 ::math::linearalgebra::mkIdentity size
638 Create an identity matrix of dimension size.
639
640 integer size
641 Dimension of the matrix
642
643
644 ::math::linearalgebra::mkDiagonal diag
645 Create a diagonal matrix whose diagonal elements are the ele‐
646 ments of the vector diag.
647
648 list diag
649 Vector whose elements are used for the diagonal
650
651
652 ::math::linearalgebra::mkRandom size
653 Create a square matrix whose elements are uniformly distributed
654 random numbers between 0 and 1 of dimension size.
655
656 integer size
657 Dimension of the matrix
658
659
660 ::math::linearalgebra::mkTriangular size ?uplo? ?value?
661 Create a triangular matrix with non-zero elements in the upper
662 or lower part, depending on argument uplo.
663
664 integer size
665 Dimension of the matrix
666
667 string uplo
668 Fill the upper (U) or lower part (L)
669
670 double value
671 Value to fill the matrix with
672
673
674 ::math::linearalgebra::mkHilbert size
675 Create a Hilbert matrix of dimension size. Hilbert matrices are
676 very ill-conditioned with respect to eigenvalue/eigenvector
677 problems. Therefore they are good candidates for testing the
678 accuracy of algorithms and implementations.
679
680 integer size
681 Dimension of the matrix
682
683
684 ::math::linearalgebra::mkDingdong size
685 Create a "dingdong" matrix of dimension size. Dingdong matrices
686 are imprecisely represented, but have the property of being very
687 stable in such algorithms as Gauss elimination.
688
689 integer size
690 Dimension of the matrix
691
692
693 ::math::linearalgebra::mkOnes size
694 Create a square matrix of dimension size whose entries are all
695 1.
696
697 integer size
698 Dimension of the matrix
699
700
701 ::math::linearalgebra::mkMoler size
702 Create a Moler matrix of size size. (Moler matrices have a very
703 simple Choleski decomposition. It has one small eigenvalue and
704 it can easily upset elimination methods for systems of linear
705 equations.)
706
707 integer size
708 Dimension of the matrix
709
710
711 ::math::linearalgebra::mkFrank size
712 Create a Frank matrix of size size. (Frank matrices are fairly
713 well-behaved matrices)
714
715 integer size
716 Dimension of the matrix
717
718
719 ::math::linearalgebra::mkBorder size
720 Create a bordered matrix of size size. (Bordered matrices have a
721 very low rank and can upset certain specialised algorithms.)
722
723 integer size
724 Dimension of the matrix
725
726
727 ::math::linearalgebra::mkWilkinsonW+ size
728 Create a Wilkinson W+ of size size. This kind of matrix has
729 pairs of eigenvalues that are very close together. Usually the
730 order (size) is odd.
731
732 integer size
733 Dimension of the matrix
734
735
736 ::math::linearalgebra::mkWilkinsonW- size
737 Create a Wilkinson W- of size size. This kind of matrix has
738 pairs of eigenvalues with opposite signs, when the order (size)
739 is odd.
740
741 integer size
742 Dimension of the matrix
743
744 Common algorithms
745
746 ::math::linearalgebra::solveGauss matrix bvect
747 Solve a system of linear equations (Ax=b) using Gauss elimina‐
748 tion. Returns the solution (x) as a vector or matrix of the
749 same shape as bvect.
750
751 list matrix
752 Square matrix (matrix A)
753
754 list bvect
755 Vector or matrix whose columns are the individual b-vec‐
756 tors
757
758 ::math::linearalgebra::solvePGauss matrix bvect
759 Solve a system of linear equations (Ax=b) using Gauss elimina‐
760 tion with partial pivoting. Returns the solution (x) as a vector
761 or matrix of the same shape as bvect.
762
763 list matrix
764 Square matrix (matrix A)
765
766 list bvect
767 Vector or matrix whose columns are the individual b-vec‐
768 tors
769
770
771 ::math::linearalgebra::solveTriangular matrix bvect ?uplo?
772 Solve a system of linear equations (Ax=b) by backward substitu‐
773 tion. The matrix is supposed to be upper-triangular.
774
775 list matrix
776 Lower or upper-triangular matrix (matrix A)
777
778 list bvect
779 Vector or matrix whose columns are the individual b-vec‐
780 tors
781
782 string uplo
783 Indicates whether the matrix is lower-triangular (L) or
784 upper-triangular (U). Defaults to "U".
785
786 ::math::linearalgebra::solveGaussBand matrix bvect
787 Solve a system of linear equations (Ax=b) using Gauss elimina‐
788 tion, where the matrix is stored as a band matrix (cf. STORAGE).
789 Returns the solution (x) as a vector or matrix of the same shape
790 as bvect.
791
792 list matrix
793 Square matrix (matrix A; in band form)
794
795 list bvect
796 Vector or matrix whose columns are the individual b-vec‐
797 tors
798
799
800 ::math::linearalgebra::solveTriangularBand matrix bvect
801 Solve a system of linear equations (Ax=b) by backward substitu‐
802 tion. The matrix is supposed to be upper-triangular and stored
803 in band form.
804
805 list matrix
806 Upper-triangular matrix (matrix A)
807
808 list bvect
809 Vector or matrix whose columns are the individual b-vec‐
810 tors
811
812
813 ::math::linearalgebra::determineSVD A eps
814 Determines the Singular Value Decomposition of a matrix: A = U S
815 Vtrans. Returns a list with the matrix U, the vector of singu‐
816 lar values S and the matrix V.
817
818 list A Matrix to be decomposed
819
820 float eps
821 Tolerance (defaults to 2.3e-16)
822
823
824 ::math::linearalgebra::eigenvectorsSVD A eps
825 Determines the eigenvectors and eigenvalues of a real symmetric
826 matrix, using SVD. Returns a list with the matrix of normalized
827 eigenvectors and their eigenvalues.
828
829 list A Matrix whose eigenvalues must be determined
830
831 float eps
832 Tolerance (defaults to 2.3e-16)
833
834
835 ::math::linearalgebra::leastSquaresSVD A y qmin eps
836 Determines the solution to a least-sqaures problem Ax ~ y via
837 singular value decomposition. The result is the vector x.
838
839 Note that if you add a column of 1s to the matrix, then this
840 column will represent a constant like in: y = a*x1 + b*x2 + c.
841 To force the intercept to be zero, simply leave it out.
842
843 list A Matrix of independent variables
844
845 list y List of observed values
846
847 float qmin
848 Minimum singular value to be considered (defaults to 0.0)
849
850 float eps
851 Tolerance (defaults to 2.3e-16)
852
853
854 ::math::linearalgebra::choleski matrix
855 Determine the Choleski decomposition of a symmetric positive
856 semidefinite matrix (this condition is not checked!). The result
857 is the lower-triangular matrix L such that L Lt = matrix.
858
859 list matrix
860 Matrix to be decomposed
861
862
863 ::math::linearalgebra::orthonormalizeColumns matrix
864 Use the modified Gram-Schmidt method to orthogonalize and nor‐
865 malize the columns of the given matrix and return the result.
866
867 list matrix
868 Matrix whose columns must be orthonormalized
869
870
871 ::math::linearalgebra::orthonormalizeRows matrix
872 Use the modified Gram-Schmidt method to orthogonalize and nor‐
873 malize the rows of the given matrix and return the result.
874
875 list matrix
876 Matrix whose rows must be orthonormalized
877
878
879 ::math::linearalgebra::dger matrix alpha x y ?scope?
880 Perform the rank 1 operation A + alpha*x*y' inline (that is: the
881 matrix A is adjusted). For convenience the new matrix is also
882 returned as the result.
883
884 list matrix
885 Matrix whose rows must be adjusted
886
887 double alpha
888 Scale factor
889
890 list x A column vector
891
892 list y A column vector
893
894 list scope
895 If not provided, the operation is performed on all
896 rows/columns of A if provided, it is expected to be the
897 list {imin imax jmin jmax} where:
898
899 · imin Minimum row index
900
901 · imax Maximum row index
902
903 · jmin Minimum column index
904
905 · jmax Maximum column index
906
907
908 ::math::linearalgebra::dgetrf matrix
909 Computes an LU factorization of a general matrix, using partial,
910 pivoting with row interchanges. Returns the permutation vector.
911
912 The factorization has the form
913
914
915 P * A = L * U
916
917
918 where P is a permutation matrix, L is lower triangular with unit
919 diagonal elements, and U is upper triangular. Returns the per‐
920 mutation vector, as a list of length n-1. The last entry of the
921 permutation is not stored, since it is implicitely known, with
922 value n (the last row is not swapped with any other row). At
923 index #i of the permutation is stored the index of the row #j
924 which is swapped with row #i at step #i. That means that each
925 index of the permutation gives the permutation at each step, not
926 the cumulated permutation matrix, which is the product of permu‐
927 tations.
928
929 list matrix
930 On entry, the matrix to be factored. On exit, the fac‐
931 tors L and U from the factorization P*A = L*U; the unit
932 diagonal elements of L are not stored.
933
934
935 ::math::linearalgebra::det matrix
936 Returns the determinant of the given matrix, based on PA=LU
937 decomposition, i.e. Gauss partial pivotal.
938
939 list matrix
940 Square matrix (matrix A)
941
942 list ipiv
943 The pivots (optionnal). If the pivots are not provided,
944 a PA=LU decomposition is performed. If the pivots are
945 provided, we assume that it contains the pivots and that
946 the matrix A contains the L and U factors, as provided by
947 dgterf. b-vectors
948
949
950 ::math::linearalgebra::largesteigen matrix tolerance maxiter
951 Returns a list made of the largest eigenvalue (in magnitude) and
952 associated eigenvector. Uses iterative Power Method as provided
953 as algorithm #7.3.3 of Golub & Van Loan. This algorithm is used
954 here for a dense matrix (but is usually used for sparse matri‐
955 ces).
956
957 list matrix
958 Square matrix (matrix A)
959
960 double tolerance
961 The relative tolerance of the eigenvalue (default:1.e-8).
962
963 integer maxiter
964 The maximum number of iterations (default:10).
965
966 Compability with the LA package Two procedures are provided for compat‐
967 ibility with Hume's LA package:
968
969 ::math::linearalgebra::to_LA mv
970 Transforms a vector or matrix into the format used by the origi‐
971 nal LA package.
972
973 list mv
974 Matrix or vector
975
976 ::math::linearalgebra::from_LA mv
977 Transforms a vector or matrix from the format used by the origi‐
978 nal LA package into the format used by the present implementa‐
979 tion.
980
981 list mv
982 Matrix or vector as used by the LA package
983
985 While most procedures assume that the matrices are given in full form,
986 the procedures solveGaussBand and solveTriangularBand assume that the
987 matrices are stored as band matrices. This common type of "sparse"
988 matrices is related to ordinary matrices as follows:
989
990 · "A" is a full-size matrix with N rows and M columns.
991
992 · "B" is a band matrix, with m upper and lower diagonals and n
993 rows.
994
995 · "B" can be stored in an ordinary matrix of (2m+1) columns (one
996 for each off-diagonal and the main diagonal) and n rows.
997
998 · Element i,j (i = -m,...,m; j =1,...,n) of "B" corresponds to
999 element k,j of "A" where k = M+i-1 and M is at least (!) n, the
1000 number of rows in "B".
1001
1002 · To set element (i,j) of matrix "B" use:
1003
1004
1005 setelem B $j [expr {$N+$i-1}] $value
1006
1007
1008 (There is no convenience procedure for this yet)
1009
1011 There is a difference between the original LA package by Hume and the
1012 current implementation. Whereas the LA package uses a linear list, the
1013 current package uses lists of lists to represent matrices. It turns out
1014 that with this representation, the algorithms are faster and easier to
1015 implement.
1016
1017 The LA package was used as a model and in fact the implementation of,
1018 for instance, the SVD algorithm was taken from that package. The set of
1019 procedures was expanded using ideas from the well-known BLAS library
1020 and some algorithms were updated from the second edition of J.C. Nash's
1021 book, Compact Numerical Methods for Computers, (Adam Hilger, 1990) that
1022 inspired the LA package.
1023
1024 Two procedures are provided to make the transition between the two
1025 implementations easier: to_LA and from_LA. They are described above.
1026
1028 Odds and ends: the following algorithms have not been implemented yet:
1029
1030 · determineQR
1031
1032 · certainlyPositive, diagonallyDominant
1033
1035 If you load this package in a Tk-enabled shell like wish, then the com‐
1036 mand
1037
1038 namespace import ::math::linearalgebra
1039 results in an error message about "scale". This is due to the fact that
1040 Tk defines all its commands in the global namespace. The solution is to
1041 import the linear algebra commands in a namespace that is not the
1042 global one:
1043
1044
1045 package require math::linearalgebra
1046 namespace eval compute {
1047 namespace import ::math::linearalgebra::*
1048 ... use the linear algebra version of scale ...
1049 }
1050
1051 To use Tk's scale command in that same namespace you can rename it:
1052
1053
1054 namespace eval compute {
1055 rename ::scale scaleTk
1056 scaleTk .scale ...
1057 }
1058
1059
1061 This document, and the package it describes, will undoubtedly contain
1062 bugs and other problems. Please report such in the category math ::
1063 linearalgebra of the Tcllib Trackers
1064 [http://core.tcl.tk/tcllib/reportlist]. Please also report any ideas
1065 for enhancements you may have for either package and/or documentation.
1066
1067 When proposing code changes, please provide unified diffs, i.e the out‐
1068 put of diff -u.
1069
1070 Note further that attachments are strongly preferred over inlined
1071 patches. Attachments can be made by going to the Edit form of the
1072 ticket immediately after its creation, and then using the left-most
1073 button in the secondary navigation bar.
1074
1076 least squares, linear algebra, linear equations, math, matrices,
1077 matrix, vectors
1078
1080 Mathematics
1081
1083 Copyright (c) 2004-2008 Arjen Markus <arjenmarkus@users.sourceforge.net>
1084 Copyright (c) 2004 Ed Hume <http://www.hume.com/contact.us.htm>
1085 Copyright (c) 2008 Michael Buadin <relaxkmike@users.sourceforge.net>
1086
1087
1088
1089
1090tcllib 1.1.5 math::linearalgebra(n)