1PEM_READ_BIO_PRIVATEKEY(3) OpenSSL PEM_READ_BIO_PRIVATEKEY(3)
2
3
4
6 pem_password_cb, PEM_read_bio_PrivateKey, PEM_read_PrivateKey,
7 PEM_write_bio_PrivateKey, PEM_write_bio_PrivateKey_traditional,
8 PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey,
9 PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid,
10 PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY,
11 PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey,
12 PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey,
13 PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey,
14 PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
15 PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
16 PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY,
17 PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey,
18 PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
19 PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
20 PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams,
21 PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
22 PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
23 PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
24 PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
25 PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
26 PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
27 PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
28 PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7,
29 PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
30
32 #include <openssl/pem.h>
33
34 typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
35
36 EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
37 pem_password_cb *cb, void *u);
38 EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
39 pem_password_cb *cb, void *u);
40 int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
41 unsigned char *kstr, int klen,
42 pem_password_cb *cb, void *u);
43 int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
44 const EVP_CIPHER *enc,
45 unsigned char *kstr, int klen,
46 pem_password_cb *cb, void *u);
47 int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
48 unsigned char *kstr, int klen,
49 pem_password_cb *cb, void *u);
50
51 int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
52 char *kstr, int klen,
53 pem_password_cb *cb, void *u);
54 int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
55 char *kstr, int klen,
56 pem_password_cb *cb, void *u);
57 int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
58 char *kstr, int klen,
59 pem_password_cb *cb, void *u);
60 int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
61 char *kstr, int klen,
62 pem_password_cb *cb, void *u);
63
64 EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
65 pem_password_cb *cb, void *u);
66 EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
67 pem_password_cb *cb, void *u);
68 int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
69 int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
70
71 RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
72 pem_password_cb *cb, void *u);
73 RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
74 pem_password_cb *cb, void *u);
75 int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
76 unsigned char *kstr, int klen,
77 pem_password_cb *cb, void *u);
78 int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
79 unsigned char *kstr, int klen,
80 pem_password_cb *cb, void *u);
81
82 RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
83 pem_password_cb *cb, void *u);
84 RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
85 pem_password_cb *cb, void *u);
86 int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
87 int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
88
89 RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
90 pem_password_cb *cb, void *u);
91 RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
92 pem_password_cb *cb, void *u);
93 int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
94 int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
95
96 DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
97 pem_password_cb *cb, void *u);
98 DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
99 pem_password_cb *cb, void *u);
100 int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
101 unsigned char *kstr, int klen,
102 pem_password_cb *cb, void *u);
103 int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
104 unsigned char *kstr, int klen,
105 pem_password_cb *cb, void *u);
106
107 DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
108 pem_password_cb *cb, void *u);
109 DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
110 pem_password_cb *cb, void *u);
111 int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
112 int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
113
114 DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
115 DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
116 int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
117 int PEM_write_DSAparams(FILE *fp, DSA *x);
118
119 DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
120 DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
121 int PEM_write_bio_DHparams(BIO *bp, DH *x);
122 int PEM_write_DHparams(FILE *fp, DH *x);
123
124 X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
125 X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
126 int PEM_write_bio_X509(BIO *bp, X509 *x);
127 int PEM_write_X509(FILE *fp, X509 *x);
128
129 X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
130 X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
131 int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
132 int PEM_write_X509_AUX(FILE *fp, X509 *x);
133
134 X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
135 pem_password_cb *cb, void *u);
136 X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
137 pem_password_cb *cb, void *u);
138 int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
139 int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
140 int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
141 int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
142
143 X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
144 pem_password_cb *cb, void *u);
145 X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
146 pem_password_cb *cb, void *u);
147 int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
148 int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
149
150 PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
151 PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
152 int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
153 int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
154
156 The PEM functions read or write structures in PEM format. In this sense
157 PEM format is simply base64 encoded data surrounded by header lines.
158
159 For more details about the meaning of arguments see the PEM FUNCTION
160 ARGUMENTS section.
161
162 Each operation has four functions associated with it. For brevity the
163 term "TYPE functions" will be used below to collectively refer to the
164 PEM_read_bio_TYPE(), PEM_read_TYPE(), PEM_write_bio_TYPE(), and
165 PEM_write_TYPE() functions.
166
167 The PrivateKey functions read or write a private key in PEM format
168 using an EVP_PKEY structure. The write routines use PKCS#8 private key
169 format and are equivalent to PEM_write_bio_PKCS8PrivateKey().The read
170 functions transparently handle traditional and PKCS#8 format encrypted
171 and unencrypted keys.
172
173 PEM_write_bio_PrivateKey_traditional() writes out a private key in the
174 "traditional" format with a simple private key marker and should only
175 be used for compatibility with legacy programs.
176
177 PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a
178 private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
179 format using PKCS#5 v2.0 password based encryption algorithms. The
180 cipher argument specifies the encryption algorithm to use: unlike some
181 other PEM routines the encryption is applied at the PKCS#8 level and
182 not in the PEM headers. If cipher is NULL then no encryption is used
183 and a PKCS#8 PrivateKeyInfo structure is used instead.
184
185 PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
186 also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo
187 however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead.
188 The algorithm to use is specified in the nid parameter and should be
189 the NID of the corresponding OBJECT IDENTIFIER (see NOTES section).
190
191 The PUBKEY functions process a public key using an EVP_PKEY structure.
192 The public key is encoded as a SubjectPublicKeyInfo structure.
193
194 The RSAPrivateKey functions process an RSA private key using an RSA
195 structure. The write routines uses traditional format. The read
196 routines handles the same formats as the PrivateKey functions but an
197 error occurs if the private key is not RSA.
198
199 The RSAPublicKey functions process an RSA public key using an RSA
200 structure. The public key is encoded using a PKCS#1 RSAPublicKey
201 structure.
202
203 The RSA_PUBKEY functions also process an RSA public key using an RSA
204 structure. However the public key is encoded using a
205 SubjectPublicKeyInfo structure and an error occurs if the public key is
206 not RSA.
207
208 The DSAPrivateKey functions process a DSA private key using a DSA
209 structure. The write routines uses traditional format. The read
210 routines handles the same formats as the PrivateKey functions but an
211 error occurs if the private key is not DSA.
212
213 The DSA_PUBKEY functions process a DSA public key using a DSA
214 structure. The public key is encoded using a SubjectPublicKeyInfo
215 structure and an error occurs if the public key is not DSA.
216
217 The DSAparams functions process DSA parameters using a DSA structure.
218 The parameters are encoded using a Dss-Parms structure as defined in
219 RFC2459.
220
221 The DHparams functions process DH parameters using a DH structure. The
222 parameters are encoded using a PKCS#3 DHparameter structure.
223
224 The X509 functions process an X509 certificate using an X509 structure.
225 They will also process a trusted X509 certificate but any trust
226 settings are discarded.
227
228 The X509_AUX functions process a trusted X509 certificate using an X509
229 structure.
230
231 The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate
232 request using an X509_REQ structure. The X509_REQ write functions use
233 CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions
234 use NEW CERTIFICATE REQUEST (as required by some CAs). The X509_REQ
235 read functions will handle either form so there are no X509_REQ_NEW
236 read functions.
237
238 The X509_CRL functions process an X509 CRL using an X509_CRL structure.
239
240 The PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7
241 structure.
242
244 The PEM functions have many common arguments.
245
246 The bp BIO parameter (if present) specifies the BIO to read from or
247 write to.
248
249 The fp FILE parameter (if present) specifies the FILE pointer to read
250 from or write to.
251
252 The PEM read functions all take an argument TYPE **x and return a TYPE
253 * pointer. Where TYPE is whatever structure the function uses. If x is
254 NULL then the parameter is ignored. If x is not NULL but *x is NULL
255 then the structure returned will be written to *x. If neither x nor *x
256 is NULL then an attempt is made to reuse the structure at *x (but see
257 BUGS and EXAMPLES sections). Irrespective of the value of x a pointer
258 to the structure is always returned (or NULL if an error occurred).
259
260 The PEM functions which write private keys take an enc parameter which
261 specifies the encryption algorithm to use, encryption is done at the
262 PEM level. If this parameter is set to NULL then the private key is
263 written in unencrypted form.
264
265 The cb argument is the callback to use when querying for the pass
266 phrase used for encrypted PEM structures (normally only private keys).
267
268 For the PEM write routines if the kstr parameter is not NULL then klen
269 bytes at kstr are used as the passphrase and cb is ignored.
270
271 If the cb parameters is set to NULL and the u parameter is not NULL
272 then the u parameter is interpreted as a null terminated string to use
273 as the passphrase. If both cb and u are NULL then the default callback
274 routine is used which will typically prompt for the passphrase on the
275 current terminal with echoing turned off.
276
277 The default passphrase callback is sometimes inappropriate (for example
278 in a GUI application) so an alternative can be supplied. The callback
279 routine has the following form:
280
281 int cb(char *buf, int size, int rwflag, void *u);
282
283 buf is the buffer to write the passphrase to. size is the maximum
284 length of the passphrase (i.e. the size of buf). rwflag is a flag which
285 is set to 0 when reading and 1 when writing. A typical routine will ask
286 the user to verify the passphrase (for example by prompting for it
287 twice) if rwflag is 1. The u parameter has the same value as the u
288 parameter passed to the PEM routine. It allows arbitrary data to be
289 passed to the callback by the application (for example a window handle
290 in a GUI application). The callback must return the number of
291 characters in the passphrase or -1 if an error occurred.
292
294 The old PrivateKey write routines are retained for compatibility. New
295 applications should write private keys using the
296 PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
297 because they are more secure (they use an iteration count of 2048
298 whereas the traditional routines use a count of 1) unless compatibility
299 with older versions of OpenSSL is important.
300
301 The PrivateKey read routines can be used in all applications because
302 they handle all formats transparently.
303
304 A frequent cause of problems is attempting to use the PEM routines like
305 this:
306
307 X509 *x;
308
309 PEM_read_bio_X509(bp, &x, 0, NULL);
310
311 this is a bug because an attempt will be made to reuse the data at x
312 which is an uninitialised pointer.
313
314 These functions make no assumption regarding the pass phrase received
315 from the password callback. It will simply be treated as a byte
316 sequence.
317
319 These old PrivateKey routines use a non standard technique for
320 encryption.
321
322 The private key (or other data) takes the following form:
323
324 -----BEGIN RSA PRIVATE KEY-----
325 Proc-Type: 4,ENCRYPTED
326 DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
327
328 ...base64 encoded data...
329 -----END RSA PRIVATE KEY-----
330
331 The line beginning with Proc-Type contains the version and the
332 protection on the encapsulated data. The line beginning DEK-Info
333 contains two comma separated values: the encryption algorithm name as
334 used by EVP_get_cipherbyname() and an initialization vector used by the
335 cipher encoded as a set of hexadecimal digits. After those two lines is
336 the base64-encoded encrypted data.
337
338 The encryption key is derived using EVP_BytesToKey(). The cipher's
339 initialization vector is passed to EVP_BytesToKey() as the salt
340 parameter. Internally, PKCS5_SALT_LEN bytes of the salt are used
341 (regardless of the size of the initialization vector). The user's
342 password is passed to EVP_BytesToKey() using the data and datal
343 parameters. Finally, the library uses an iteration count of 1 for
344 EVP_BytesToKey().
345
346 The key derived by EVP_BytesToKey() along with the original
347 initialization vector is then used to decrypt the encrypted data. The
348 iv produced by EVP_BytesToKey() is not utilized or needed, and NULL
349 should be passed to the function.
350
351 The pseudo code to derive the key would look similar to:
352
353 EVP_CIPHER* cipher = EVP_des_ede3_cbc();
354 EVP_MD* md = EVP_md5();
355
356 unsigned int nkey = EVP_CIPHER_key_length(cipher);
357 unsigned int niv = EVP_CIPHER_iv_length(cipher);
358 unsigned char key[nkey];
359 unsigned char iv[niv];
360
361 memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
362 rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
363 if (rc != nkey)
364 /* Error */
365
366 /* On success, use key and iv to initialize the cipher */
367
369 The PEM read routines in some versions of OpenSSL will not correctly
370 reuse an existing structure. Therefore the following:
371
372 PEM_read_bio_X509(bp, &x, 0, NULL);
373
374 where x already contains a valid certificate, may not work, whereas:
375
376 X509_free(x);
377 x = PEM_read_bio_X509(bp, NULL, 0, NULL);
378
379 is guaranteed to work.
380
382 The read routines return either a pointer to the structure read or NULL
383 if an error occurred.
384
385 The write routines return 1 for success or 0 for failure.
386
388 Although the PEM routines take several arguments in almost all
389 applications most of them are set to 0 or NULL.
390
391 Read a certificate in PEM format from a BIO:
392
393 X509 *x;
394
395 x = PEM_read_bio_X509(bp, NULL, 0, NULL);
396 if (x == NULL)
397 /* Error */
398
399 Alternative method:
400
401 X509 *x = NULL;
402
403 if (!PEM_read_bio_X509(bp, &x, 0, NULL))
404 /* Error */
405
406 Write a certificate to a BIO:
407
408 if (!PEM_write_bio_X509(bp, x))
409 /* Error */
410
411 Write a private key (using traditional format) to a BIO using triple
412 DES encryption, the pass phrase is prompted for:
413
414 if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
415 /* Error */
416
417 Write a private key (using PKCS#8 format) to a BIO using triple DES
418 encryption, using the pass phrase "hello":
419
420 if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
421 NULL, 0, 0, "hello"))
422 /* Error */
423
424 Read a private key from a BIO using a pass phrase callback:
425
426 key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
427 if (key == NULL)
428 /* Error */
429
430 Skeleton pass phrase callback:
431
432 int pass_cb(char *buf, int size, int rwflag, void *u)
433 {
434
435 /* We'd probably do something else if 'rwflag' is 1 */
436 printf("Enter pass phrase for \"%s\"\n", (char *)u);
437
438 /* get pass phrase, length 'len' into 'tmp' */
439 char *tmp = "hello";
440 if (tmp == NULL) /* An error occurred */
441 return -1;
442
443 size_t len = strlen(tmp);
444
445 if (len > size)
446 len = size;
447 memcpy(buf, tmp, len);
448 return len;
449 }
450
452 EVP_EncryptInit(3), EVP_BytesToKey(3), passphrase-encoding(7)
453
455 The old Netscape certificate sequences were no longer documented in
456 OpenSSL 1.1.0; applications should use the PKCS7 standard instead as
457 they will be formally deprecated in a future releases.
458
460 Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
461
462 Licensed under the OpenSSL license (the "License"). You may not use
463 this file except in compliance with the License. You can obtain a copy
464 in the file LICENSE in the source distribution or at
465 <https://www.openssl.org/source/license.html>.
466
467
468
4691.1.1d 2019-10-03 PEM_READ_BIO_PRIVATEKEY(3)