1elpa_solve_evp_real_2stage_dLoiubbrlaer(y3)FunctioneslpMaa_nsuoallve_evp_real_2stage_double(3)
2
3
4

NAME

6       elpa_solve_evp_real_2stage_double - solve the double-precision real
7       eigenvalue problem with the 2-stage ELPA solver (legacy interface)
8
9

SYNOPSIS

11   FORTRAN INTERFACE
12       use elpa1 use elpa2
13       success = elpa_solve_evp_real_2stage_double (na, nev,
14       a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols,
15       mpi_comm_rows, mpi_comm_cols, mpi_comm_all, THIS_REAL_ELPA_KERNEL,
16       useQR, useGPU)
17
18       With the definitions of the input and output variables:
19
20       integer, intent(in)            na:            global dimension of
21       quadratic matrix a to solve
22       integer, intent(in)            nev:           number of eigenvalues to
23       be computed; the first nev eigenvalules are calculated
24       real*8,  intent(inout)         a:             locally distributed part
25       of the matrix a. The local dimensions are lda x matrixCols
26       integer, intent(in)            lda:           leading dimension of
27       locally distributed matrix a
28       real*8,  intent(inout)         ev:            on output the first nev
29       computed eigenvalues
30       real*8,  intent(inout)         q:             on output the first nev
31       computed eigenvectors
32       integer, intent(in)            ldq:           leading dimension of
33       matrix q which stores the eigenvectors
34       integer, intent(in)            nblk:          blocksize of block cyclic
35       distributin, must be the same in both directions
36       integer, intent(in)            matrixCols:    number of columns of
37       locally distributed matrices a and q
38       integer, intent(in)            mpi_comm_rows: communicator for
39       communication in rows. Constructed with elpa_get_communicators(3)
40       integer, intent(in)            mpi_comm_cols: communicator for
41       communication in colums. Constructed with elpa_get_communicators(3)
42       integer, intent(in)            mpi_comm_all:  communicator for all
43       processes in the processor set involved in ELPA
44       integer, intent(in), optional  THIS_ELPA_REAL_KERNEL: choose the
45       compute kernel for 2-stage solver
46       logical, intent(in), optional: useQR:         optional argument;
47       switches to QR-decomposition if set to .true.
48       logical, intent(in), optional: useGPU:        decide whether GPUs
49       should be used or not
50       logical                        success:       return value indicating
51       success or failure
52
53   C INTERFACE
54       #include "elpa_legacy.h"
55
56       success = elpa_solve_evp_real_2stage_double (int na, int nev,  double
57       *a, int lda,  double *ev, double *q, int ldq, int nblk, int matrixCols,
58       int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int
59       THIS_ELPA_REAL_KERNEL, int useQR, int useGPU);
60
61       With the definitions of the input and output variables:
62
63       int     na:                    global dimension of quadratic matrix a
64       to solve
65       int     nev:                   number of eigenvalues to be computed;
66       the first nev eigenvalules are calculated
67       double *a:                     pointer to locally distributed part of
68       the matrix a. The local dimensions are lda x matrixCols
69       int     lda:                   leading dimension of locally distributed
70       matrix a
71       double *ev:                    pointer to memory containing on output
72       the first nev computed eigenvalues
73       double *q:                     pointer to memory containing on output
74       the first nev computed eigenvectors
75       int     ldq:                   leading dimension of matrix q which
76       stores the eigenvectors
77       int     nblk:                  blocksize of block cyclic distributin,
78       must be the same in both directions
79       int     matrixCols:            number of columns of locally distributed
80       matrices a and q
81       int     mpi_comm_rows:         communicator for communication in rows.
82       Constructed with elpa_get_communicators(3)
83       int     mpi_comm_cols:         communicator for communication in
84       colums. Constructed with elpa_get_communicators(3)
85       int     mpi_comm_all:          communicator for all processes in the
86       processor set involved in ELPA
87       int     THIS_ELPA_REAL_KERNEL: choose the compute kernel for 2-stage
88       solver
89       int     useQR:                 if set to 1 switch to QR-decomposition
90       int     useGPU:                decide whether GPUs should be used or
91       not
92       int     success:               return value indicating success (1) or
93       failure (0)
94
95

DESCRIPTION

97       Solve the real eigenvalue problem with the 2-stage solver. The ELPA
98       communicators mpi_comm_rows and mpi_comm_cols are obtained with the
99       elpa_get_communicators(3) function. The distributed quadratic marix a
100       has global dimensions na x na, and a local size lda x matrixCols. The
101       solver will compute the first nev eigenvalues, which will be stored on
102       exit in ev. The eigenvectors corresponding to the eigenvalues will be
103       stored in q. All memory of the arguments must be allocated outside the
104       call to the solver.
105       The interface elpa_solve_evp_real(3) is a more flexible alternative.
106       This function is part of the legacy API of the ELPA library. Better use
107       the current API.
108

SEE ALSO

110       Old interface: elpa_get_communicators(3) elpa_solve_evp_real(3)
111       elpa_solve_evp_complex(3) elpa_solve_evp_real_1stage(3)
112       elpa_solve_evp_complex_1stage(3)  elpa_solve_evp_real_2stage_single(3)
113       elpa_solve_evp_complex_2stage_double(3)
114       elpa_solve_evp_complex_2stage_singe(3)
115       Current interface: elpa2_print_kernels(1)
116
117
118
119ELPA                            Wed May 17e2l0p1a7_solve_evp_real_2stage_double(3)
Impressum